Add on nanoparticles and antimicrobial agents in base material may improve prosthetic materials through 3D printing technology: Study

Written By :  Dr. Shravani Dali
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2024-07-12 14:30 GMT   |   Update On 2024-07-13 05:44 GMT
Adding nanoparticles and antimicrobial agents in base material may improve prosthetic materials through 3D printing technology, which suggests a new study published in the Journal of Prosthetic Dentistry.

Three-dimensional (3D) printed acrylic resin base materials have been adopted in prosthetic dentistry. However, their mechanical and biological properties require improvement. The purpose of this clinical study was to evaluate the effect of adding zirconium oxide nanoparticles to a 3D printable acrylic resin base material for a 2-implant-retained complete mandibular overdenture in terms of peri-implant tissue health, surface roughness, and biofilm formation. Twenty edentulous patients were enrolled in this clinical parallel study. All patients received maxillary complete dentures opposing a 2-implant-retained mandibular overdenture. The participants were randomly divided into 2 equal groups according to the mandibular overdenture base material, nonmodified 3D printable acrylic resin (control group) or 3D printable acrylic resin base material modified with 3.0 wt% zirconium oxide nanoparticles (study group). Peri-implant tissue health and surface roughness were measured immediately at the insertion of the mandibular overdenture (T0), after 3 months (T1), and after 6 months (T2). Microbiological assessment of the denture base was done after 1 week, 1 month, 3 months, and 6 months of overdenture use. The data were analyzed using a statistical software program.

The Wilcoxon signed-rank test, paired t test, and Fisher exact test were used to compare distributed data. The Mann Whitney U test and repeated measures ANOVA test were used to compare distributed data at different times (α=.05). Results: The gingival index (GI), plaque index (PI), probing depth (PD), and surface roughness values at the baseline, 3 months, and 6 months were statistically higher with the nonmodified compared with the modified group (P=.001). Regarding the microbiological analysis, the nonmodified group also had a statistically higher mean bacterial and Candida albicans count than the modified group (P<.05). No significant increase in the bacteria was found in the nonmodified group with time (P=.252), but, for the modified group, a statistically significant decrease in bacteria count was found with time (P<.001). Adding zirconium oxide nanoparticles to a 3D printable acrylic resin base material was found to be promising. This addition improved the peri-implant tissue health and decreased surface roughness and biofilm formation.

Advertisement

Reference:

Albadwi MM, Elsheikh HA, Abozaed HW, ELdegla HEA, Mostafa AZH, Emera RMK. Impact of adding zirconium oxide nanoparticles to the 3D printable acrylic resin base material for implant-retained overdentures: A clinical comparative parallel study. J Prosthet Dent. 2024 Jun 10:S0022-3913(24)00354-8. doi: 10.1016/j.prosdent.2024.04.035. Epub ahead of print. PMID: 38862339.

Tags:    
Article Source : The Journal of Prosthetic Dentistry

Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement/treatment or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2024 Minerva Medical Treatment Pvt Ltd

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News