Chemically Induced Stem Cell Islets Functionally Cure Type 1 Diabetes in Phase 1 Clinical Trial
Chinese scientists have realized the clinical cure of a type 1 diabetes patient by transplanting islet cells derived from chemically induced pluripotent stem cells (CiPSC-islets), according to clinical research published in the journal Cell.
This CiPSC-islets therapy aimed at curing type 1 diabetes, the first of its kind, was performed by medical scientists from Tianjin First Central Hospital, Peking University, Changping Laboratory and Hangzhou Reprogenix Bioscience.
During the study, a female patient who had type 1 diabetes for 11 years was completely dependent on insulin treatment and suffered from poor blood sugar control. After the transplant of CiPSC-islets, she regained the capability to autonomously regulate her blood sugar.
Seventy-five days after the transplant, she became insulin independent and has remained insulin injection-free for over a year. All her diabetes-related indicators have reached the levels of a healthy person, confirming the clinical cure of this type 1 diabetes patient.
According to Deng Hongkui, director of Peking University's Stem Cell Research Center, another corresponding author, pluripotent stem cells have unlimited proliferation capability and can differentiate into all functional cell types, making them the "seed cells" of regenerative medicine.
However, they only exist in the early stages of embryonic development, and go on to differentiate into various types of adult cells that make up the organism, losing their "seed cell" capability.
If this natural process is reversed, allowing highly differentiated adult cells to regain a pluripotent state similar to that of early embryonic development, then it might be possible to use these "seed cells" to prepare human cells and tissues in vitro for treating various diseases caused by aging, pathological changes, injuries or genetic factors.
According to Deng, CiPSC-islets provide a new source for use in transplantation therapy for diabetes, while chemical reprogramming may become a universal core technology for efficiently preparing various types of functional cells, paving the new way for the widespread application of cell therapy in treatment of major diseases.
Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.