Tissue-engineered implants provide new hope for vocal injuries
WEST LAFAYETTE, Ind. - New technology from Purdue University and Indiana University School of Medicine innovators may one day help patients who suffer devastating vocal injuries from surgery on the larynx.
A collaborative team consisting of Purdue biomedical engineers and clinicians from IU has tissue-engineered component tissue replacements that support reconstruction of the larynx. The team's work is published in The Laryngoscope.
The larynx is a very complex human organ consisting of outer cartilage for structural support, inner muscle that contracts to permit voicing, swallowing, and breathing, and inner vibratory lining.
Currently, thousands of patients each year with laryngeal cancer or trauma require a procedure called total laryngectomy in which the entire larynx is removed, and patients are left without a human voice and breathing through a hole in their neck called a stoma.
"There are very few options for laryngeal reconstruction and no options for restoration of laryngeal appearance, structure and function," said Stacey Halum, a fellowship-trained laryngologist specializing in head and neck surgery. "While surgeons occasionally use local or free tissue transfers to repair laryngeal defects, these local or regional tissues just 'plug holes' or close the defects without really restoring function because the transferred tissues are not dynamic - they do not move or contract. They also tend to lose bulk and scar over time."
Halum, along with p a professor in Purdue's Weldon School of Biomedical Engineering, led the innovation team.
The innovators used a patented collagen polymer developed by Harbin's lab to fabricate the three regenerative replacement tissues for the laryngeal reconstruction procedure.
"Our approach is unique in that we are using customized engineered tissue replacements, with the muscle component fabricated using the patient's own muscle progenitor cells," Harbin said. "We believe these engineering approaches will provide patients with better options for reconstruction so that total laryngectomies become something of the past."
Harbin and Halum believe the technology has widespread applications for custom fabrication of engineered tissue replacements for tissue restoration in other parts of the body.
Harbin founded GeniPhys, a Purdue startup focused on the commercialization of the collagen polymer technology.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.