Found: A way to grow retinal nerve cells in lab
Advertisement
Washington: Scientists have developed a method to efficiently turn human stem cells into retinal nerve cells that transmit visual signals from the eye to the brain, an advance that could lead to treatment for people blinded by glaucoma and multiple sclerosis (MS).
Death and dysfunction of these cells, known as retinal ganglion cells, cause vision loss in conditions like glaucoma and MS.
"Our work could lead not only to a better understanding of the biology of the optic nerve, but also to a cell-based human model that could be used to discover drugs that stop or treat blinding conditions," said study leader Donald Zack.
The process entails genetically modifying a line of human embryonic stem cells to become fluorescent upon their differentiation to retinal ganglion cells, and then using that cell line for development of new differentiation methods and characterisation of the resulting cells.
Using a genome editing tool called CRISPR-Cas9, the researchers inserted a fluorescent protein gene into the stem cells' DNA. This red fluorescent protein POU4F2 would be expressed only if another gene named BRN3B was also expressed. BRN3B is expressed by mature retinal ganglion cells, so once a cell differentiated into a retinal ganglion cell, it would appear red under a microscope.
Next, they used a technique called fluorescence-activated cell sorting to separate the newly differentiated retinal ganglion cells from a mixture of different cells into a highly purified cell population.
The cells showed biological and physical properties seen in retinal ganglion cells.
Researchers also found that adding a naturally occurring plant chemical called forskolin on the first day of the process helped improve the cells' efficiency of becoming retinal ganglion cells.
Death and dysfunction of these cells, known as retinal ganglion cells, cause vision loss in conditions like glaucoma and MS.
"Our work could lead not only to a better understanding of the biology of the optic nerve, but also to a cell-based human model that could be used to discover drugs that stop or treat blinding conditions," said study leader Donald Zack.
The process entails genetically modifying a line of human embryonic stem cells to become fluorescent upon their differentiation to retinal ganglion cells, and then using that cell line for development of new differentiation methods and characterisation of the resulting cells.
Using a genome editing tool called CRISPR-Cas9, the researchers inserted a fluorescent protein gene into the stem cells' DNA. This red fluorescent protein POU4F2 would be expressed only if another gene named BRN3B was also expressed. BRN3B is expressed by mature retinal ganglion cells, so once a cell differentiated into a retinal ganglion cell, it would appear red under a microscope.
Next, they used a technique called fluorescence-activated cell sorting to separate the newly differentiated retinal ganglion cells from a mixture of different cells into a highly purified cell population.
The cells showed biological and physical properties seen in retinal ganglion cells.
Researchers also found that adding a naturally occurring plant chemical called forskolin on the first day of the process helped improve the cells' efficiency of becoming retinal ganglion cells.
Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.