New tiny device may Isolate harmful bacteria from body fluids

Written By :  Dr. Kamal Kant Kohli
Published On 2020-03-23 12:03 GMT   |   Update On 2020-03-23 12:03 GMT
CREDIT: WENRONG HE/ROCHESTER INSTITUTE OF TECHNOLOGY

Researchers at Rochester Institute of Technology have created a tiny device that can rapidly detect harmful bacteria in blood. The new device is easy to operate and it rapidly isolates, retrieves and concentrates target bacteria from bodily fluids.This will allow health care professionals to pinpoint the cause of potentially deadly infections and fight them with drugs. The study has been published in the journal ACS Applied Materials & Interfaces.

Drug-resistant bacteria, or super-bugs, are a major public health concern. Globally, at least 700,000 people die each year as a result of drug-resistant infections, including 230,000 deaths from multidrug-resistant tuberculosis.

"The rapid identification of drug-resistant bacteria allows health care providers to prescribe the right drugs, boosting the chances of survival," said coauthor Ruo-Qian (Roger) Wang, an assistant professor in the Department of Civil and Environmental Engineering in the School of Engineering at Rutgers University-New Brunswick.

Based on a new approach, the tiny new device rapidly isolates, retrieves and concentrates target bacteria from bodily fluids. It efficiently filters particles and bacteria, capturing about 86 percent of them. The nano-device has magnetic beads of different sizes that are designed to trap, concentrate and retrieve Escherichia coli (E. coli) bacteria. The small spaces between the beads are used to isolate bacteria in the device.

The inexpensive, transparent device is easy to fabricate and operate, making it ideal for detecting disease-causing organisms in laboratory and health care settings, according to the study. The research team is working to perfect the device and plans to add multiple devices onto a small chip and explore scaling up testing in the field.

For further reference log on to:

http://dx.doi.org/10.1021/acsami.9b19311 

Tags:    
Article Source : journal ACS Applied Materials & Interfaces

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News