Researchers develop non invasive sticker patch for faster diagnosis of tuberculosis

Written By :  Hina Zahid
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2021-06-26 02:45 GMT   |   Update On 2021-06-26 05:44 GMT

Israel: A sticker patch devised by Technion scientists can catch compounds released by the skin and is a novel means of diagnosing tuberculosis. The analysis of these compounds by using artificial intelligence (AI) can provide a quick, non-invasive diagnosis. In future implementations, the group plans to integrate the sensors into the patch and use a smartphone to read its results.

The findings of the study were published in the journal Advanced Science.

Tuberculosis, colloquially known as "consumption," is prevalent in the developing world, with 95% of cases occurring there. In 2019, an estimated 10 million people fell ill with tuberculosis, and 1.4 million died of the disease. About one-third of the world population is estimated to be infected by tuberculosis bacteria. Since 1993, the World Health Organization (WHO) defines tuberculosis as a "global health emergency." Effective treatment for tuberculosis is available, but diagnosis remains a roadblock, with around 3 million cases missed annually.

Early symptoms of tuberculosis are non-specific, complicating diagnosis. What makes matters worse is that currently existing diagnosis methods are slow, and at times too expensive or complex for resource-limited settings. For example, a sputum smear ($2.60 to $10.50 per examination) is too expensive in a location where people live on $1/day, while a mycobacterial culture test takes 4–8 weeks and at least three visits by the patient to finalize the diagnosis and begin treatment.

WHO regards a fast, cheap, and efficient tuberculosis test as crucial to fighting the disease. And it is this need that the team of Professor Hossam Haick from the Wolfson Department of Chemical Engineering at the Technion address in their ground-breaking study. Led by Dr. Rotem Vishinkin, the group created a sticker patch to be applied on the patient's arm. Containing a pouch of absorbing material, the patch collected compounds released through the skin. These provided the sought-after diagnostic tool.

A device based on this proof-of-concept study, called A-patch, is already undergoing clinical trials. Dr. Vishinkin, the project's scientific leader, explained, "our initial studies, done on a large number of subjects in India and in South Africa showed high effectiveness in diagnosing tuberculosis, with over 90% sensitivity and over 70% specificity. We showed that tuberculosis can be diagnosed through the compounds released by the skin. Our current challenge is minimizing the size of the sensor array and fitting it into the sticker patch."

The platform the group is developing is cheap, fast, and simple in its utilization, and requires no specially trained personnel. The group hopes the same methodology and the same platform could in the future be used to diagnose other diseases and conditions, making effective diagnosis accessible to remote areas in the world.

The clinical studies were conducted in the University of Cape Town and Groote Schuur Hospital, South Africa, the All India Institute of Medical Sciences, India, and the University of Latvia and Riga East University Hospital, Latvia. The study was supported by the Bill & Melinda Gates Foundation and generously assisted by Professor Gilla Kaplan. The continuation of the development under A-Patch project is supported by Horizon 2020. Dr. Vishinkin thanks the Ariane de Rothchild Fellowship for their support during her PhD studies.

Reference:

The study titled, "Profiles of Volatile Biomarkers Detect Tuberculosis from Skin," is published in the journal Advanced Science.

DOI: https://onlinelibrary.wiley.com/doi/10.1002/advs.202100235

Tags:    
Article Source : Advanced Science

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News