A Protein-Based Gel Can Be Used for Higher Performance, More Sustainable Skincare Products: Study Reveals
Advertisement
NYU Tandon School of Engineering researchers have created a novel protein-based gel as a potential ingredient in sustainable and high-performance personal skincare products (PSCPs). This protein-based material, named Q5, could transform the rheological -- or flow-related -- properties of personal skincare products, making them more stable under the slightly acidic conditions of human skin. This innovation could also streamline the creation of more eco-friendly skincare products, offering increased efficacy and durability while addressing market demands for ethically sourced ingredients.
In a new study published in ACS Applied Polymer Materials from the lab of Professor of Chemical and Biomolecular Engineering Jin Kim Montclare, researchers have created a novel protein-based gel as a potential ingredient in sustainable and high-performance personal skincare products.
Current formulations often rely on ingredients such as polysaccharides or synthetic polymers to achieve the desired texture, stability, and compatibility with skin's natural pH, which is mildly acidic. However, these traditional rheological modifiers have raised environmental concerns regarding sourcing and sustainability.
To take on this challenge, Montclare and her colleagues fabricated a self-assembling coiled-coil protein they call Q5. In the study, Q5 demonstrated impressive pH stability. The protein's unique structure enables it to form strong gels that do not degrade easily under acidic conditions, enhancing the longevity and performance of skincare products. This resilience marks a significant improvement over earlier protein-based gels, which typically disassemble in lower pH environments.
Notably, the research suggests that Q5 could be produced sustainably via bacterial or yeast fermentation, circumventing the ethical and ecological issues associated with animal-derived proteins or synthetic polymers. The protein's natural ability to attract and retain moisture -- also enables it to bind various molecules, adding versatility as a moisturizer or binding agent in skincare products.
Reference: https://engineering.nyu.edu/news/self-assembling-proteins-can-be-used-higher-performance-more-sustainable-skincare-products
Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.