Novel device measures nerve activity that may help treatment sepsis and PTSD
Sepsis is the body's extreme response to an infection. It is a life-threatening medical emergency. Sepsis happens when an infection you already have triggers a chain reaction throughout your body.
A team of researchers designed a device to non-invasively measure cervical nerve activity in humans, a new tool that they say could potentially inform and improve treatments for patients with sepsis, a life-threatening response to infection, and mental health conditions, such as post-traumatic stress disorder (PTSD). The device is described in the latest issue of Scientific Reports.
The new device features a flexible array of electrodes that stretch from the lower front to the upper back of the neck, allowing researchers to capture electrical activity across different nerves. An integrated user interface permits real-time visualization of data and a custom algorithm groups persons according to their nervous systems' response to stress.
Researchers found that study participants fell consistently into two distinct biotype groups: those whose neural firing and heart rates increased during both tests and those who exhibited the opposite trend. The device's unique algorithm identified differences in the response of specific nerve clusters to stressors, such as pain induced by the ice water, and physical symptoms, such as sweating and increased heart rate associated with the timed breathing challenge.
Sepsis occurs when the body's immune system overreacts to an infection, damaging its own tissues in the process. Mortality risk rapidly increases with time, so technology that aids in the detection and flagging of at-risk hospitalized patients would provide physicians with an early warning to administer antibiotics, improving a patient's chances of avoiding or surviving sepsis.
Reference:
Bu, Y., Kurniawan, J.F., Prince, J. et al. A flexible adhesive surface electrode array capable of cervical electroneurography during a sequential autonomic stress challenge. Scientific Reports, 19467 (2022), DOI:10.1038/s41598-022-21817-w.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.