Scientists use organoid model to identify potential new pancreatic cancer treatment
A drug screening system that models cancers using lab-grown tissues called organoids has helped uncover a promising target for future pancreatic cancer treatments, according to a new study from researchers at Weill Cornell Medicine.
In the study, published Dec. 26 in Cell Stem Cell, the scientists tested more than 6,000 compounds on their pancreatic tumor organoids, which contain a common pancreatic cancer-driving mutation. They identified one compound—an existing heart drug called perhexiline maleate—that powerfully suppresses the organoids’ growth.
The researchers discovered that the cancer-driving mutation in the organoids forces the abnormally high production of cholesterol, which the drug largely reverses.
“Our findings identify hyperactive cholesterol synthesis as a vulnerability that may be targetable in most pancreatic cancers,” said study co-senior author Dr. Todd Evans, vice chair for research in surgery, the Peter I. Pressman MD Professor in Surgery, and a member of the Hartman Institute for Therapeutic Organ Regeneration at Weill Cornell Medicine.
“This study also highlights the value of using genetically well-defined organoids to model cancer and discover new treatment strategies,” said co-senior author Dr. Shuibing Chen, director of the Center for Genomic Health, the Kilts Family Professor Surgery and a member of the Hartman Institute for Therapeutic Organ Regeneration at Weill Cornell Medicine.
Reference: Scientists use organoid model to identify potential new pancreatic cancer treatment; JOURNAL Cell Stem Cell
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.