The mechanism early cancer cells employ to evade the immune system
In a recent study by MIT and Dana-Farber Cancer Institute, researchers uncovered a mechanism employed by precancerous cells to evade immune surveillance. Activation of the gene SOX17 during early colon cancer stages makes these cells nearly undetectable by the immune system.
SOX17, active in embryonic development, influences intestinal and blood vessel development. Inhibiting SOX17 or its pathway may offer a new strategy to treat early-stage colon cancer before it progresses. Over time these large tumor cells can accumulate mutations, forming polyps that may evolve into metastatic colon cancer.
“Activation of the SOX17 program in the earliest innings of colorectal cancer formation is a critical step that shields precancerous cells from the immune system. If we can inhibit the SOX17 program, we might be better able to prevent colon cancer, particularly in patients that are prone to developing colon polyps,” says Omer Yilmaz, an MIT associate professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and one of the senior authors of the study.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.