Could a phytochemical derived from vegetables like broccoli be the answer to antibiotic resistant pathogens?
Antibiotic resistant bacterial pathogens are increasingly playing a role in rising illness and preventing wound healing, especially in hospitals. While more and more pathogens have developed biofilms that protect them from being eradicated by antibiotics, fewer classes of antibiotics are being developed.
Researchers from Ben-Gurion University of the Negev decided to go in a different direction and investigated a phytochemical derived from cruciferous vegetables such as broccoli that breaks down the biofilm.
The phytochemical 3,3'-diindolylmethane (DIM) successfully broke down the biofilms protecting two different pathogens including Acinetobacter baumannii and Pseudomonas aeruginosa– enabling their eradication 65% and 70% of the time, respectively. Combined with antibiotics, that number jumped to 94%.
Prof. Ariel Kushmaro, Dr. Karina Golberg and his team together with Prof. Robert Marks, all of them members of the Avram and Stella Goldstein-Goren Department of Biotechnology Engineering at BGU chronicled their findings in the peer-reviewed journal Pharmaceutics (doi.org/10.3390/pharmaceutics14050967) recently.
Additionally, when they introduced DIM into an infected wound, it sped up the healing process significantly, the team found.
"Our findings show promise for other avenues of research in addition to known classes of antibiotics," says Prof. Kushmaro. Further development and commercialization of the technology is currently being done at the startup company LifeMatters http://lifematters.co.il
Additional researchers from Prof. Kushmaro's lab included: Bat-el Kagan, Sigalit Barzanizan, Dr. Karin Yaniv and Dr. Esti Kramarsky-Winter. They collaborated with researchers from Near East University and Girne American University in Cyprus.
The research was supported by the National Institute for Biotechnology in the Negev and Israel's Ministry of Science and Technology.
Prof. Kushmaro is also a member of the Goldman Sonnenfeldt School of Sustainability and Climate Change, and the Ilse Katz Center for Nanoscale Science and Technology.
Reference:
Golberg, K.; Markus, V.; Kagan, B.-e.; Barzanizan, S.; Yaniv, K.; Teralı, K.; Kramarsky-Winter, E.; Marks, R.S.; Kushmaro, A. Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022, 14, 967. https://doi.org/10.3390/pharmaceutics14050967
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.