Liraglutide modulates associative learning in obese individuals through GLP-1 receptor activation

Written By :  Dr. Kamal Kant Kohli
Published On 2023-08-25 06:00 GMT   |   Update On 2023-08-25 12:09 GMT
Advertisement

Germany: A recent study published in Nature Metabolism has shown the potential of Liraglutide to restore impaired associative learning in individuals with obesity. 

Liraglutide is a GLP-1 agonist, which activates the GLP-1 receptor in the body, stimulating insulin production and producing a feeling of satiety. It is often used to treat obesity and type 2 diabetes and is given once a day. 

To control our behaviour, the brain must be able to form associations. This involves, for example, associating a neutral external stimulus with a consequence following the stimulus (e.g., the hotplate glows red - you can burn your hand). In this way, the brain learns what the implication of our handling of the first stimulus are. Associative learning is the basis for forming neural connections and gives stimuli their motivational force. It is essentially controlled by a brain region called the dopaminergic midbrain. This region has many receptors for the body's signalling molecules, such as insulin, and can thus adapt our behaviour to the physiological needs of our body.

Advertisement

But what happens when the body's insulin sensitivity is reduced due to obesity? Does this change our brain activity, our ability to learn associations and thus our behaviour? Researchers at the Max Planck Institute for Metabolism Research have now measured how well the learning of associations works in participants with normal body weight (high insulin sensitivity, 30 volunteers) and in participants with obesity (reduced insulin sensitivity, 24 volunteers), and if this learning process is influenced by the anti-obesity drug liraglutide.

Low insulin sensitivity reduces the brain's ability to associate sensory stimuli.

In the evening, they injected the participants with either the drug liraglutide or a placebo in the evening. The next morning, the subjects were given a learning task that allowed the researchers to measure how well associative learning works. They found that the ability to associate sensory stimuli was less pronounced in participants with obesity than in those of normal weight, and that brain activity was reduced in the areas encoding this learning behavior.

After just one dose of liraglutide, participants with obesity no longer showed these impairments, and no difference in brain activity was seen between participants with normal weight and obesity. In other words, the drug returned the brain activity to the state of normal-weight subjects.

"These findings are of fundamental importance. We show here that basic behaviours such as associative learning depend not only on external environmental conditions but also on the body’s metabolic state. So, whether someone has overweight or not also determines how the brain learns to associate sensory signals and what motivation is generated. The normalisation we achieved with the drug in subjects with obesity, therefore, fits with studies showing that these drugs restore a normal feeling of satiety, causing people to eat less and therefore lose weight," says study leader Marc Tittgemeyer from the Max Planck Institute for Metabolism Research.

"While it is encouraging that available drugs have a positive effect on brain activity in obesity, it is alarming that changes in brain performance occur even in young people with obesity without other medical conditions. Obesity prevention should play a much greater role in our healthcare system in the future. Lifelong medication is the less preferred option in comparison primary prevention of obesity and associated complications," says Ruth Hanßen, first author of the study and a physician at the University Hospital of Cologne.

Reference:

Hanssen, R., Rigoux, L., Kuzmanovic, B. et al. Liraglutide restores impaired associative learning in individuals with obesity. Nat Metab (2023). https://doi.org/10.1038/s42255-023-00859-y

Tags:    
Article Source : Nature Metabolism

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News