Novel plant-based antiviral drug effective against highly infectious SARS-CoV-2 Delta variant: Study

Written By :  Medha Baranwal
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2021-11-23 05:30 GMT   |   Update On 2021-11-23 07:13 GMT

UK: The continual emergence of virulent SARS-CoV-2 variants has made the struggle to control the Covid-19 pandemic even more difficult as these variants are either more infectious or cause more infection or both. Against this backdrop, a recent study in the journal Virulence has shown a novel natural antiviral drug called thapsigargin (TG) to be just as effective at treating all of the newer SARS-CoV-2 variants, including the Delta variant.

Thapsigargin is a plant-based antiviral treatment for Covid-19, recently discovered by scientists at the University of Nottingham. 

The study, led by Professor Kin-Chow Chang from the School of Veterinary Medicine and Science at the University, found that the Delta variant, compared with other recent variants, showed the highest ability to multiply in cells, and was mostly able to directly spread to neighboring cells. In co-infections with two different SARS-CoV-2 variants, the Delta variant also boosted the multiplication of its co-infected partners.

The study also showed that thapsigargin, recently discovered by the same group of scientists to block other viruses, including the original SARS-CoV-2, was just as effective at treating all of the newer SARS-CoV-2 variants, including the Delta variant.

In their previous studies* the team showed that the plant-derived antiviral, at small doses, triggers a highly effective broad-spectrum host-centered antiviral innate immune response against three major types of human respiratory viruses, including SARS-CoV-2.

In this latest study, the team set out to find out how well the emergent Alpha, Beta, and Delta variants of SARS-CoV-2 are able to multiply in cells relative to each other as single variant infections and in co-infections- where cells are infected with two variants at the same time. The team also wanted to know just how effective TG was at blocking these emergent variants.

Of the three, the Delta variant showed the highest ability to multiply in cells, and was mostly able to spread directly to neighbouring cells; its amplification rate at 24 hours of infection was over four times that of the Alpha variant and nine times more than the Beta variant.

In co-infections, the Delta variant boosted the multiplication of its co-infected partners. Furthermore, co-infection with Alpha and Delta or Alpha and Beta conferred multiplication synergy, where total new virus output was greater than the sum of corresponding single-variant infections.

Notably, all SARS-CoV-2 variants were highly susceptible to TG treatment. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every co-infection at greater than 95% relative to controls. Likewise, TG was effective in inhibiting each variant during active infection.

Professor Kin Chow Chang, lead author of the study, said: "Our new study has given us better insights into the dominance of the Delta variant. Even though we have shown that this variant is clearly the most infectious and promotes production of other variants in co-infections, we are pleased to have shown that TG is just as effective against all of them.

"Together, these results point to the antiviral potential of TG as a post-exposure prophylactic and an active therapeutic agent."

Reference:

The study titled, "Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin," is published in the journal Virulence. 

DOI: https://www.tandfonline.com/doi/full/10.1080/21505594.2021.2006960

Tags:    
Article Source : Virulence

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News