Cashew shell compound may reverse demyelination in MS: Study
Many neurological disorders stem from damage to myelin, the insulating material which wraps around nerves and provides optimal nerve conduction. We previously found that IL-33, a chemical made in response to injury, was able to induce new myelin formation.
In laboratory experiments, a chemical compound found in the shell of the cashew nut promotes the repair of myelin, a team from Vanderbilt University Medical Center reports today in the Proceedings of the National Academy of Sciences.
Myelin is a protective sheath surrounding nerves. Damage to this covering -- demyelination -- is a hallmark of multiple sclerosis and related diseases of the central nervous system.
"We see this as an exciting finding, suggesting a new avenue in the search for therapies to correct the ravages of MS and other demyelinating diseases," said the paper's senior author, Subramaniam Sriram, MBBS, William C. Weaver III Professor of Neurology and chief of the Division of Neuroimmunology.
Previous work led by Sriram showed that a protein called interleukin 33, or IL-33, induced myelin formation. IL-33 is, among other things, an immune response regulator, and multiple sclerosis is an autoimmune disorder.
The cashew shell compound is called anacardic acid. Sriram and team grew interested in it because it's known to inhibit an enzyme involved in gene expression called histone acetyltransferase, or HAT, and the team had discovered that whatever inhibits HAT induces production of IL-33.
The report includes a range of new findings that point to potential therapeutic use of anacardic acid for demyelinating diseases:
- In vitro, the addition of the compound to rat cells most responsible for myelination -- oligodendrocyte precursor cells, or OPCs -- spurred induction of IL-33 and rapidly increased the expression of myelin genes and proteins, including dose-dependent increases in myelin basic protein;
- In two animal models of demyelination, treatment with the compound increased the relative presence of IL-33-expressing OPCs and led to reduced paralysis;
- In an animal model of demyelination treated with the compound, dissection and electron microscopy showed dose-dependent increases in myelination.
"These are striking results that clearly urge further study of anarcardic acid for demyelinating diseases," Sriram said.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.