Bone fracture risk may increase when critical enzymatic processes decline
TROY, N.Y. - A loss of enzymatic processes within the body can increase a person's risk of bone fracture. This new insight was recently published in eLife by an international team of scientists and engineers led by Deepak Vashishth, the director of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute.
Enzymatic processes are essential to any number of chemical reactions that occur within the body, including the production of the extracellular matrix within bone that is critical for mechanical support. Phosphorylation - one of those key enzymatic processes - is the attachment of a phosphoryl to a protein, and is critical for cellular regulation. This process plays a role in many diseases, but until now, researchers didn't know if it altered tissue integrity and organ function.
In this paper, researchers looked at a protein known as osteopontin, which plays a vital role in holding the matrix together. The researchers developed a process by which they could induce phosphorylation - or its counterpart, dephosphorylation - in bones from genetically modified mice, some that had osteopontin and others that did not. By comparing results from the two groups, researchers found that fracture toughness, a measure of bone's mechanical strength, increased with osteopontin phosphorylation and declined with dephosphorylation. More specifically, phosphorylation enhanced crosslinks and increased the attraction between the charged groups on osteopontin and bone mineral, making bone stronger and its fracture more difficult.
https://elifesciences.org/articles/58184
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.