Ultra-low-dose of CT in 3D printing models good enough to diagnose wrist fractures
The introduction of CT in the early 1970s provided orthopaedic surgeons with a method of imaging that could be used to characterise a fracture more completely than by conventional radiography alone.
Today, CT scanning is used routinely in the evaluation of specific fractures. A research team of Guangdong Hospital of Traditional Chinese Medicine, China recently found that an ultralow-dose CT protocol yielded 97% lower radiation dose and enabled the production of 3D-printed models that were deemed equivalent to those manufactured from standard-dose images for distal radial fractures. The research findings were published in the European Journal of Radiology on December 29, 2020.
CT has several advantages, including the ability to characterise a fracture in greater detail, to identify an occult fracture, and to diagnose incomplete union, all of which have practical implications for treatment of the individual patient. For these reasons, the number of CT scans performed annually has increased dramatically. Bone injuries can be treated using tissue engineering scaffolds, but the conventional constructs have a big challenge in supplying requirements of native tissue, i.e., bioactivity potential, mechanical stability, controllable biodegradability, and proper cellular interaction. In this regard, 3D printing technology with the possibility of controlling the internal microstructure and geometry of synthesized matrixes was introduced as a promising approach for bone defect regeneration. However, the effects of low-dose CT techniques on 3D printing have been unknown. Therefore, the researchers conducted a study to explore the effect of ultra-low-dose computed tomography (CT) on three-dimensional (3D) printing models and the diagnosis of wrist fractures.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.