- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
AI aided CT angiography promising for CAD risk stratification, finds study
According to recent research ,AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. Further the study ,published in Journal of Cardiovascular Computed Tomography ,confirmed that there was a wide range of atherosclerosis identified through AI.
Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. Researchers hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis.
This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category.
Results highlighted the following facts.
- AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively.
- Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference −0.8%; 95% CI 13.8% to −15.3%) and per-patient (mean difference −2.3%; 95% CI 15.8% to −20.4%).
- L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis.
- There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution.
"Use of this FDA-cleared device as a clinical decision support tool in combination with enhanced CCTA education may improve the reproducibility of CCTA interpretation in various clinical and investigational settings," the authors wrote. "The results of this study provide an important foundational platform for future research in AI-guided atherosclerosis evaluation across a wide spectrum of diseases."they concluded.
For full article, follow the link: DOI:https://doi.org/10.1016/j.jcct.2021.05.004
Source: Journal of Cardiovascular Computed Tomography
Dr Satabdi Saha (BDS, MDS) is a practicing pediatric dentist with a keen interest in new medical researches and updates. She has completed her BDS from North Bengal Dental College ,Darjeeling. Then she went on to secure an ALL INDIA NEET PG rank and completed her MDS from the first dental college in the country – Dr R. Ahmed Dental College and Hospital. She is currently attached to The Marwari Relief Society Hospital as a consultant along with private practice of 2 years. She has published scientific papers in national and international journals. Her strong passion of sharing knowledge with the medical fraternity has motivated her to be a part of Medical Dialogues.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751