- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Docosahexaenoic acid has potential role in heart regeneration, suggests study

Adult zebrafish (Danio rerio) and neonatal mice can fully regenerate their hearts after partial amputation through proliferation of pre-existing cardiomyocytes (CMs). However, the adult mammalian heart has limited regenerative capability following cardiac damage.
The limited regenerative capability of mammalian hearts following cardiac damage is a major barrier in cardiovascular medicine and often leads to heart failure.
The reason for this regeneration discrepancy remains elusive. Here, a study from Jun Chen’s lab of Zhejiang university reveals that Docosahexaenoic acid (DHA) is accumulated only in the injury hearts of zebrafish and neonatal mice, but not of adult mice, which coincides with the upregulation of DHA synthesis genes in CMs, fibrobasts and macrophages near the injury areas. Inhibition of Fads2, a DHA synthesis enzyme, impairs heart regeneration in both zebrafish and neonatal mice. Injection of DHA remodels transcriptome from injury response to regeneration response and improves cardiac function in adult mice after myocardial infarction. Interestingly, DHA facilitates CM proliferation, but inhibits fibrosis and inflammation.
Mechanistically, only DHA, but not oleic acid (OA), can trigger the peroxisome proliferator-activated receptor d (Ppard) to bind to the promoter regions of heart regeneration related genes such as: Mef2d, Phlda3 and Txndc5 to regulate their expression (Fig. 1). Molecular docking, molecular dynamics simulations and mutagenesis experiments suggest that DHA binds to PPARD in a distinct manner compared to OA, which may help explain their differing abilities to influence the expression of heart regeneration genes.
The findings demonstrate that the DHA signal plays an essential and evolutionarily conserved role in heart regeneration and provide a therapeutic potential for myocardial infarction.
Reference:
Zimu Tang, Zhaoxiang Sun, Chun Yang, Qian Gong, Zirui Liu, Nanhui Chen, Kai Liu, Yong Wang, Ting Zhao, Shengfan Ye, Lenan Zhuang, Jiahao Lin, Wei-Qiang Tan, Jinrong Peng, Jun Chen, Accumulation of newly synthesized docosahexaenoic acid plays an essential role in heart regeneration, Protein & Cell, 2025;, pwaf062, https://doi.org/10.1093/procel/pwaf062
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751

