- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Machine learning may help identify patients at high risk of GI bleeding: JAMA
In a recent cross-sectional study, machine learning models were examined, showing similar performance in identifying patients at high risk for GIB after being prescribed antithrombotic agents. Findings have been published in JAMA Network Open.
"Two models (RegCox and XGBoost) performed modestly better than the HAS-BLED score. A prospective evaluation of the RegCox model compared with HAS-BLED may provide a better understanding of the clinical impact of improved performance."the research team quoted.
Anticipating the risk of gastrointestinal bleeding (GIB) when initiating antithrombotic treatment (oral antiplatelets or anticoagulants) is limited by existing risk prediction models. Machine learning algorithms may result in superior predictive models to aid in clinical decision-making.
Taking a cue from this, researchers aimed to compare the performance of 3 machine learning approaches with the commonly used HAS-BLED (hypertension, abnormal kidney and liver function, stroke, bleeding, labile international normalized ratio, older age, and drug or alcohol use) risk score in predicting antithrombotic-related GIB.
This retrospective cross-sectional study used data from the OptumLabs Data Warehouse, which contains medical and pharmacy claims on privately insured patients and Medicare Advantage enrollees in the US. The study cohort included patients 18 years or older with a history of atrial fibrillation, ischemic heart disease, or venous thromboembolism who were prescribed oral anticoagulant and/or thienopyridine antiplatelet agents between January 1, 2016, and December 31, 2019.
A cohort of patients prescribed oral anticoagulant and thienopyridine antiplatelet agents was divided into development and validation cohorts based on date of index prescription. The development cohort was used to train 3 machine learning models to predict GIB at 6 and 12 months. The performance of the models for predicting GIB in the validation cohort, evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value, and prediction density plots. Relative importance scores were used to identify the variables that were most influential in the top-performing machine learning model.
Results highlighted the following interesting facts.
- In the entire study cohort of 306 463 patients, 166 177 (54.2%) were male, 193 648 (63.2%) were White, the mean (SD) age was 69.0 (12.6) years, and 12 322 (4.0%) had experienced a GIB.
- In the validation data set, the HAS-BLED model had an AUC of 0.60 for predicting GIB at 6 months and 0.59 at 12 months.
- The RegCox model performed the best in the validation set, with an AUC of 0.67 at 6 months and 0.66 at 12 months. XGBoost was similar, with AUCs of 0.67 at 6 months and 0.66 at 12 months, whereas for RSF, AUCs were 0.62 at 6 months and 0.60 at 12 months.
- The variables with the highest importance scores in the RegCox model were prior GI bleed (importance score, 0.72); atrial fibrillation, ischemic heart disease, and venous thromboembolism combined (importance score, 0.38); and use of gastroprotective agents (importance score, 0.32).
"The machine learning models examined showed similar performance in identifying patients at high risk for GIB after being prescribed antithrombotic agents. Two models (RegCox and XGBoost) performed modestly better than the HAS-BLED score. A prospective evaluation of the RegCox model compared with HAS-BLED may provide a better understanding of the clinical impact of improved performance. Furthermore, the findings suggest that developers of risk prediction tools should consider machine learning algorithms, but 1 machine learning technique might not be clearly superior to another. Future prospective studies appear to be needed to better understand the extent of improvement in predictive performance that can also improve clinical outcomes."said the team.
For full article follow the link : 10.1001/jamanetworkopen.2021.10703
Primary source: JAMA Network Open
Dr Satabdi Saha (BDS, MDS) is a practicing pediatric dentist with a keen interest in new medical researches and updates. She has completed her BDS from North Bengal Dental College ,Darjeeling. Then she went on to secure an ALL INDIA NEET PG rank and completed her MDS from the first dental college in the country – Dr R. Ahmed Dental College and Hospital. She is currently attached to The Marwari Relief Society Hospital as a consultant along with private practice of 2 years. She has published scientific papers in national and international journals. Her strong passion of sharing knowledge with the medical fraternity has motivated her to be a part of Medical Dialogues.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751