- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Rotavirus protein NSP4 manipulates gastrointestinal disease severity, finds study
Researchers at Baylor College of Medicine and collaborating institutions have improved our understanding of how rotavirus, the most common cause of acute gastroenteritis in children, makes people sick. The study published in Science Advances is among the first to show that the rotavirus protein NSP4 is both necessary and sufficient for multiple aspects of rotavirus infection by disrupting calcium signaling not only within infected cells but also in nearby uninfected cells. These disruptions in calcium signaling affect rotavirus disease severity, providing new insights into how NSP4’s function influences rotavirus virulence. The findings suggest that manipulating NSP4 could lead to new strategies to prevent or treat rotavirus infections.
“Rotavirus alone accounts for one-quarter of all cases of severe pediatric acute gastroenteritis, which typically presents with watery diarrhea, vomiting, fever and abdominal pain. Currently, nearly 500,000 children worldwide die from this condition every year,” said corresponding author Dr. Joseph Hyser, associate professor of molecular virology and microbiology, as well as part of the Alkek Center for Metagenomic and Microbiome Research and member of the Dan L Duncan Comprehensive Cancer Center at Baylor. “Although oral rehydration therapy and live-attenuated rotavirus vaccines have helped reduce the burden of rotavirus acute gastroenteritis in children worldwide, there is still room for improvement.”
In the current study, Hyser and his colleagues looked deeper into how functions of NSP4 during rotavirus infection contribute to disease severity in hopes of finding a novel approach to treat or prevent the disease. In a previous study, the researchers discovered that rotavirus triggers aberrant calcium signals known as ‘intercellular calcium waves’ that radiate from infected cells to neighboring uninfected cells and that inhibition of these signals lessened disease severity.
“The results indicated that it was likely that calcium waves contributed to rotavirus replication and virulence; however, it was not clear how the virus triggered this signal,” Hyser said. “We already had evidence that placed NSP4 at the top of the list of viral proteins that could be involved in triggering calcium waves.”
Working with existing human and porcine virulent and attenuated rotavirus strains, as well as novel genetic recombinant strains generated by a reverse genetics system, the team examined the role of NSP4 in the induction of calcium waves and its connection to disease severity using a range of experimental models, including cells grown in the lab, intestinal organoid cultures and animal models.
The researchers found that the ability of rotavirus to generate calcium waves was fully attributable to NSP4, such that expression of NSP4 in cells, even in the absence of rotavirus infection, generated calcium waves indistinguishable from a native infection.
Importantly NSP4 from attenuated rotaviruses, which cause milder or no disease, induced fewer calcium waves than NSP4 from virulent strains and inserting the attenuated NSP4 into a virulent rotavirus strain both decreased the number of calcium waves it produced and decreased its ability to cause diarrhea in an animal model.
“We found that the ability of rotavirus to generate calcium waves goes hand in hand with NSP4, expression of NSP4 alone is sufficient to generate calcium waves, and multiple aspects of rotavirus disease severity correlated with the ability to generate calcium waves,” Hyser said.
Furthermore, calcium waves also triggered an immune response, implicating calcium dysregulation as a means of viral recognition.
“Altogether, the evidence suggested that NSP4 seemed to be involved in inducing calcium waves linked to both rotavirus disease severity and host cell responses to this aberrant level of calcium signaling,” Hyser said.
The findings may apply beyond rotavirus to other viruses carrying proteins similar to NSP4 that could be involved in disrupting calcium signaling.
Reference:
J. Thomas Gebert et al. ,Viroporin activity is necessary for intercellular calcium signals that contribute to viral pathogenesis.Sci. Adv.11,eadq8115(2025).DOI:10.1126/sciadv.adq8115
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751