- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Novel genes with a role in deadly heart defects identified - Video
Overview
By identifying genes in patients and testing their effects in fruit flies, researchers from Sanford Burnham Prebys have found new genes that contribute to hypoplastic left heart syndrome (HLHS), a rare, life-threatening heart disease that occurs in infants. The findings, published in the journal eLife, bring scientists one step closer to unraveling the biology of this complex disease.
In babies with HLHS, the left side of the heart (left ventricle) is underdeveloped and unable to pump oxygenated blood to the rest of the body. Though rare, HLHS is extremely dangerous—it is nearly always fatal without multiple open-heart surgeries.
Genetics is thought to be a major driver of HLHS, but the specific genes involved have remained a mystery. To look for genes that contribute to HLHS, the researchers sequenced the genomes of 183 people with HLHS and their parents, including a family in which the parents were genetically related to each other. Focusing on this family helped the researchers narrow their search to a few key genes.
To test whether the genes they identified could be contributing to HLHS, the researchers performed genetic experiments on fruit fly hearts that are built with genes similar to those found in human hearts. They found that blocking the activity of these genes in flies interfered with their heart’s ability to contract, leading to significant heart defects.
Reference: Mitochondrial MICOS complex genes, implicated in hypoplastic left heart syndrome, maintain cardiac contractility and actomyosin integrity, eLife, DOI 10.7554/eLife.83385.
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed