- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Accurate prediction of diabetes and pre-diabetes by AI + ECG heart trace - Video
Overview
Structural and functional changes in the cardiovascular system occur early on even before indicative blood glucose changes, and these show up on an ECG heart trace.
The researchers, therefore, wanted to see if machine learning (AI) techniques could be used to harness the screening potential of ECG to predict pre-diabetes and type 2 diabetes in people at high risk of the disease.
They drew on participants in the Diabetes in Sindhi Families in Nagpur (DISFIN) study, which looked at the genetic basis of type 2 diabetes and other metabolic traits in Sindhi families at high risk of the disease in Nagpur, India.
Families with at least one known case of type 2 diabetes and living in Nagpur, which has a high density of Sindhi people, were enrolled in the study.
Participants provided details of their personal and family medical histories, and their normal diet, and underwent a full range of blood tests and clinical assessments. Their average age was 48 and 61% of them were women.
Pre-diabetes and diabetes were identified from the diagnostic criteria specified by the American Diabetes Association.
The prevalence of both type 2 diabetes and pre-diabetes was high: around 30% and 14%, respectively. And the prevalence of insulin resistance was also high-35%---as was the prevalence of other influential coexisting conditions—high blood pressure (51%), obesity (around 40%), and disordered blood fats (36%).
A standard 12-lead ECG heart trace lasting 10 seconds was done for each of the 1262 participants included. And 100 unique structural and functional features for each lead were combined for each of the 10,461 single heartbeats recorded to generate a predictive algorithm (diabetes).
Important ECG features consistently matched the known biological triggers underpinning cardiac changes that are typical of diabetes and pre-diabetes.
Ref:
Dr Hemant Kulkarni et. al, Machine-learning algorithm to noninvasively detect diabetes and prediabetes from an electrocardiogram, BMJ Innovations, 9-Aug-2022,10.1136/bmjinnov-2021-000759
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed