- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Study reveals insights into tacking diabetic kidney disease - with a side order of how anti-obesity drugs work - Video
Overview
Data from Australian researchers could partly explain why a trial of a new drug for diabetes, was recently halted because it was found to be so effective. Importantly, the data also reveals how anti-obesity drugs like Ozempic, actually work, which to date have been a mystery.
In early November the FLOW trial of the drug semaglutide on the progression of renal impairment in people with type 2 diabetes and chronic kidney disease was halted ahead of schedule because of the drug’s efficacy.
Part of the rationale for the cessation of the trial could be explained by research led by Monash University’s Associate Professor Melinda Coughlan, and published today in the journal, Kidney International, showing that a drug that targets a particular hormone GLP1, also interacts with a receptor called RAGE, to control the kidney damage that is the hallmark of Type 2 diabetes.
The discovery of the importance of RAGE opens up new therapeutic drug targets for the prevention of kidney disease in people with diabetes. Diabetic kidney disease (DKD) occurs in up to 40% of individuals with diabetes. According to Associate Professor Coughlan, the outlook for DKD has improved over recent decades as a result of improved blood glucose control and blood pressure management through new therapies, “however, a significant proportion of individuals with diabetes will still progress to end stage kidney disease or die prematurely from a cardiovascular event,” she said.
“Our study opens up a way to potentially prevent kidney disease in those people who are, so far, treatment resistant.”
“We know that the RAGE receptor promotes kidney injury but by blocking interactions between drugs such as Ozempic and this RAGE receptor we now have new information to expand and develop new drugs to protect the kidney.
Reference: Study reveals insights into tacking diabetic kidney disease - with a side order of how anti-obesity drugs work; Kidney International, DOI: 10.1016/j.kint.2023.09.029