- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
How to avoid the bacterium that is a major cause of GI distress - Video
Overview
Scientists are working to clip the long, flexible appendages that enable the common bacterium Campylobacter jejuni to make its way from undercooked poultry and natural waterways into our intestinal tract where it makes millions of us sick each year.
Motility is the "magic bullet" for this bacterium which uses its long, thin, flexible arm-like flagella to maneuver the thick mucus in our gastrointestinal tract, power its way inside our intestinal cells, then wrap itself in a protective biofilm when threatened, said the researchers.
Researchers found that the nimble flagella, each longer than the bacterium's corkscrew-shape central body, don't just propel, they help grab and hold onto the cell the bacterium is working to infect and push inside, she says. These essential arms, sticky because of their natural sugar coating, also play a role in building biofilm that will protect it from harsh times like too little food or too much oxygen.
Researchers wanted to stop the pervasive bacterium, potentially with a safe molecule that could be given as soon as signs of infection appear, like diarrhea and fever, by targeting elements key to its amazing mobility. The enzyme CbrR, a so-called response regulator of the bacterium that enables it to assess its dynamic environment and make the adjustments it needs to survive.
They also took the first looks in this bacterium at the "second messenger" cyclic-di-GMP, which the enzyme produces and uses to make those adjustments; and most recently the amino acids that function as building blocks for the bacterium's long arms.
The researchers studied both the primary sugar Campylobacter uses to make slimy, protective biofilm and how the regulatory protein CsrA helps. They showed long ago that when CsrA is missing, Campylobacter can't move well, stick to each other or the gastrointestinal tract or make biofilm preventing sort of infection.
Reference: Putting the brakes on a bacterium that is a major cause of GI distress; MEDICAL COLLEGE OF GEORGIA AT AUGUSTA UNIVERSITY. 1st July 2022.
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed