- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
New clues to genetic causes of high cholesterol found - Video
Overview
The discovery of a genetic variant that is relatively common among people of Polynesian ancestry, but incredibly rare in most other populations, is giving clues to the genetic underpinnings of high cholesterol in all people, according to new research led by University of Pittsburgh School of Public Health geneticists in partnership with several other groups, including the University of Otago and the Samoan health research community.
The surprising finding, published this week in the journal Human Genetics and Genomics Advances, demonstrates the importance of ensuring diversity in genetic databases.
High cholesterol is a major cause of disease burden in countries of all income levels, is a risk factor for heart disease and stroke, and is estimated to cause 2.6 million deaths annually worldwide, according to the World Health Organization.
Carlson and her team built their study to explore a signal that popped up in a large genome-wide survey looking for genes associated with lipids, or fats, in the body. It suggested that a gene variant on chromosome 5 could be associated with cholesterol. The team set out to "fine map" the region using genetic data from 2,851 Samoan adults from the Obesity, Lifestyle, And Genetic Adaptations (OLAGA, which means "life" in Samoan) Study Group who had also provided health information, including lipid panels. To double-check the finding, the team looked for the association in 3,276 other Polynesian people from Samoa, American Samoa and Aotearoa New Zealand, and the same connection between the variant and cholesterol was seen in them.
Using data from the western Polynesian Samoan participants, the team was able to fill in the missing information around the region they were interested in on chromosome 5. This led them to BTNL9 – a gene that directs the production of the BTNL9 protein. Proteins typically signal to cells to perform actions, though scientists still haven't characterized the precise role of the BTNL9 protein.
4It turned out that Polynesian people with low levels of HDL "good" cholesterol and high levels of triglycerides had a "stop-gain" variant in BTNL9, which means the gene was being directed to stop doing its protein-production job, a strong hint that the BTNL9 protein is involved in helping cells maintain healthy cholesterol levels.
Reference:
JENNA CARLSON et al,Human Genetics and Genomics Advances,DOI:10.1016/j.xhgg.2022.100155
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed