- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Nanometric photodiodes to study the activity of neurons - Video
Overview
'A jolt of light' to modulate the activity of a single neuron in real time. This is how innovative nanometric photodiodes work, the protagonists of a new research study published in Science Advances. The technique developed by Professor Laura Ballerini's team at SISSA in Trieste, in collaboration with the Universities of Chicago and Cambridge, is a truly innovative and sophisticated one. When activated with an infrared ray, photodiodes of nanometric dimension are able to send an electrical message to the nerve cell to which they are bound, regulating its function.
The effect of the stimulation can then be extended and amplified to the surrounding network of neurons in virtue of their synaptic contacts. Working like a real electrode, but with a non-invasive and very selective approach, these nanotechnologies could be extremely useful for basic research, to investigate in-depth the mechanisms of the nervous system, but also to develop targeted therapies for neurological diseases.
Ref:
Laura Ballerini et. al,Distributed interfacing by nanoscale photodiodes enables single neuron light-activation and sensory enhancement in 3D spinal explants,Science Advances,12-Aug-2022,DOI: 10.1126/sciadv.abp9257
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed