- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Research reveals the scale of disorder underpinning Motor Neurone Disease - Video
Overview
Researchers at the Francis Crick Institute and UCL have shown that hundreds of proteins and mRNA molecules are found in the wrong place in nerve cells affected by Motor Neuron Disease (MND), also known as Amyotrophic Lateral Sclerosis (ALS).
New research published in Neuron shows that the problem is much broader. This ‘mislocalization’ affects many more proteins than first thought, especially those involved in RNA binding. The mislocalization extends to mRNAs too, molecules that deliver instructions to make proteins from the DNA in the nucleus.
The researchers used stem cells from patients to create motor neurons with ALS-causing mutations in the TARDBP and VCP genes. They then separated the two main compartments of the cell (nucleus and cytoplasm) and analyzed all the mRNA and protein within each. They found that in ALS cells, hundreds of mRNAs and proteins were mislocated compared to healthy cells.
They observed proteins and mRNAs relocating from the cell’s nucleus (the ‘control center’) into the cytoplasm (the ‘body’ of the cell) or vice versa, hinting at potential transport issues within the cell. The researchers also saw that mislocated mRNAs and proteins interacted more with each other, compared to those in the right place.
Reference: Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. THE FRANCIS CRICK INSTITUTE
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed