- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Chemotherapy-related fertility loss reversal using cell-based therapy - Video
Overview
The preclinical study showed that injecting ovarian tissue-derived differentiated induced pluripotent stem cells can restore hormone production and fertility in mice with premature ovarian failure related to genetic diseases and cancer treatment
A new study by investigators from Brigham and Women’s Hospital in a preclinical model demonstrates the potential for restoring fertility when the ovaries have stopped working. Researchers found that adult stem cells could restore healthy hormone levels after chemotherapy and lead to natural conception resulting in the birth of live mice. Techniques based on the study could revolutionize fertility options for women with premature ovarian failure.
Previous studies have shown that cells from the mouse ovary, called granulosa cells, can be used to create induced pluripotent stem cells. These stem cells can become any kind of cell in the body. The researchers turned them into ovarian cells and showed in the lab that the cells make reproductive hormones like estrogen and progesterone and can become cells that turn into eggs.
The researchers saw that the injected stem cells restored the mouse hormone levels and fertility, including the ability to conceive and give birth to live mouse pups naturally. Interestingly, they also saw that the injection of stem cells into one ovary appeared to heal the other ovary, restarting its egg production.
Reference: Elias, K., Ng, N et al. "Fertility restoration in mice with chemotherapy induced ovarian failure using differentiated iPSCs." Lancet eBiomedicine. DOI: 10.1016/j.ebiom.2023.104715.
Speakers
Isra Zaman
B.Sc Life Sciences, M.Sc Biotechnology, B.Ed