- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
New Nanobody Treatment Reduces Lung Metastases in Breast Cancer, Study Reveals - Video
|
Overview
A recent study published in Oncotarget proposes that a nanobody that targets a specific part of the V-ATPase on the surface of cells can block the activity of this protein in 4T1-12B breast cancer cells. This nanobody not only stops these cancer cells from invading other tissues in lab tests but also prevents them from spreading to the lungs when the cells are implanted in the mammary fat pad of mice.
Researchers suggest that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. They have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit.
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump responsible for regulating the acidity levels within intracellular compartments. It achieves this by transporting protons across the plasma membrane of different cell types, including cancer cells, which helps maintain proper pH balance and supports various cellular functions.
Breast cancer is among the most frequently diagnosed cancers, making up nearly one-third (30%) of all new cases in women in 2022. When first diagnosed with early-stage breast cancer, 20–30% of patients will eventually develop metastatic breast cancer. Additionally, 6–10% of all breast cancer cases are diagnosed at stage IV, known as de novo metastatic breast cancer. Metastasis is often linked to a worse prognosis compared to non-metastatic breast cancer, with a median survival of just 2–3 years. The most common sites where breast cancer spreads include the bone, liver, lung, and brain.
Reference: Li Z., Alshagawi M. A., Oot R. A., Alamoudi M. K., Su K., Li W., Collins M. P., Wilkens S., Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumour cells to lung in mice. Oncotarget. 2024; 15: 575-587.
Speakers
Dr. Garima Soni
BDS, MDS(orthodontics)
Dr. Garima Soni holds a BDS (Bachelor of Dental Surgery) from Government Dental College, Raipur, Chhattisgarh, and an MDS (Master of Dental Surgery) specializing in Orthodontics and Dentofacial Orthopedics from Maitri College of Dentistry and Research Centre. At medical dialogues she focuses on dental news and dental and medical fact checks against medical/dental mis/disinformation