- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Study Sheds Light on Promising New Strategy to Slow Cancer Progression - Video
|
Overview
The findings published in Nature Chemistry reveal that protein targets of cancer proteins when disrupted with particular chemical compounds or small molecules may help to stop cancer cell growth, potentially leading to the creation of more effective and targeted cancer treatments.
In the study, scientists outlined activity-based protein profiling (ABPP), a technique that allows for the global capture of protein activity. The research team applied this technique alongside another approach to identify both the proteins and specific sites that interacted with a set of stereo probes chemical compounds designed to selectively and permanently bind to proteins. These stereo probes help investigate protein functions and uncover potential drug targets.
The research team’s stereo probes were electrophilic, designed to permanently bind to proteins, specifically targeting the amino acid cysteine. Cysteine is commonly found in proteins, including those in cancer cells, and plays a key role in forming essential structural bonds.
When chemicals interact with cysteine, they can disrupt these bonds and cause protein malfunction, which impedes cell growth. Many cancer drugs work by irreversibly binding to cysteines in proteins.
To determine which specific proteins interacted with the stereo probes, the team employed a technique called protein-directed activity-based protein profiling (ABPP). This method revealed over 300 individual proteins that reacted with the stereoprobe compounds. However, the researchers sought to go further by pinpointing the exact locations of these interactions.
Each stereoprobe molecule has two main components: the binding part and the electrophilic part, the stereoprobe molecule can enter and it blocks the protein from binding to other proteins—ultimately preventing cell division.
Reference: Njomen, E., Hayward, R.E., DeMeester, K.E. et al. Multi-tiered chemical proteomic maps of tryptoline acrylamide–protein interactions in cancer cells. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01601-1
Speakers
Dr. Garima Soni
BDS, MDS(orthodontics)
Dr. Garima Soni holds a BDS (Bachelor of Dental Surgery) from Government Dental College, Raipur, Chhattisgarh, and an MDS (Master of Dental Surgery) specializing in Orthodontics and Dentofacial Orthopedics from Maitri College of Dentistry and Research Centre. At medical dialogues she focuses on dental news and dental and medical fact checks against medical/dental mis/disinformation