- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
New technique may increase efficiency of existing antifungal drugs
With antimicrobial resistance (AMR) increasing around the world, new research led by the 4 has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.
Candida albicans, a well-known yeast usually seen in the mouth, skin, gut and vagina, is reported to form biofilms and cause mild to life threatening infections. Fluconazole, an antifungal drug widely used to treat Candida infections is completely ineffective in treating Candida biofilms and new drugs are needed to treat them. However, unlike antibiotics, developing antifungal drugs is very challenging because yeast cells are structurally similar to human cells, as a result, there is a greater chance of unwanted side effects with new antifungal drugs. A better alternative would be to improve the efficiency of currently approved antifungal drugs such as fluconazole but with minimal side effects.
Recent studies have shown that microorganisms can communicate with each other using various chemical signals. Some microorganisms use these signals to control other competing microorganisms and these signals could potentially be used as antimicrobial drugs.
In the study, published in International Journal of Pharmaceutics, the researchers investigated whether using some of these microbial signals from bacteria could improve the activity of fluconazole against Candida biofilms.
The research team found that a specific chemical signal released from a major bacterial pathogen can be successfully used to significantly improve the activity of fluconazole against Candida biofilms by packaging them to small lipid molecules and delivering them together.
The pioneering research is one of only a few studies to demonstrate the possibility of using naturally existing microbial compounds against other pathogenic microorganisms.
Dr Nihal Bandara, Lecturer in Oral Microbiology from the Bristol Dental School and corresponding author, said: "It is well known that microorganisms live as "slime" communities, called "microbial biofilms", and are responsible for up to 80 percent of all infections in humans. These microorganisms are extremely difficult to remove even with the most effective antimicrobial drugs. They can lead to a significant number of deaths and disabilities to patients and can be a healthcare and financial burden to economies around the world.
"It was really exciting to discover that we can use various signals released by microorganisms against others to control infections."
The research team would like to develop the technique used in the study and investigate the efficacy of new drug formulation using an animal model.
In the future, it is hoped researchers and pharmaceutical industries will explore the antimicrobial properties of microbial chemical signals so they can be developed into cost effective treatments.
For more details click on the link: http://dx.doi.org/10.1016/j.ijpharm.2020.119096
Hina Zahid Joined Medical Dialogue in 2017 with a passion to work as a Reporter. She coordinates with various national and international journals and association and covers all the stories related to Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in the medical field. Email:Â editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751