- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Promising new class of antimalarial drugs discovered

Innovative research approaches are therefore urgently needed to achieve long-term progress in prevention and treatment.
Malaria is caused by parasites of the genus Plasmodium, which is transmitted to humans through the bite of infected mosquitoes.
Plasmodium falciparum, the deadliest of the malaria species, has a highly complex life cycle controlled by precise gene regulation.
Understanding these regulatory processes is crucial in order to specifically combat the pathogen at different stages of development.
The team identified the chromatin remodeler PfSnf2L (a protein complex that regulates the accessibility of DNA for transcription) as a key regulator of genes that play an important role in various stages of the pathogen's development.
"Our research shows that PfSnf2L is essential for P. falciparum to dynamically adjust gene expression," explains Maria Theresia Watzlowik, lead author of the study.
"The unique sequence and functional properties of PfSnf2L led to the identification of a highly specific inhibitor that only kills Plasmodium falciparum," explains Gernot Längst, Professor of Biochemistry at the University of Regensburg.
"This inhibitor represents a new class of antimalarials, potentially targeting all life cycle stages," adds Professor Markus Meißner, Chair Professor of Experimental Parasitology at LMU's Faculty of Veterinary Medicine.
"Malaria is one of the most adaptive diseases we face," observes Längst.
Targeting its epigenetic regulation could pave the way for increasing the effectiveness of existing drugs, for example, or preventing the development of resistant parasites.
"The study underscores the importance of integrating epigenetics into malaria research. Future work will focus on testing small molecules that inhibit the parasite's epigenetic machinery and exploring their effectiveness in preclinical models," concludes Meißner.
In addition to scientists from LMU and the University of Regensburg, researchers from the University of Zurich (Switzerland), Pennsylvania State University (United States), and the University of Glasgow (United Kingdom) were involved in the study, which was supported by the German Research Foundation (DFG).
Reference: Maria Theresia Watzlowik, Elisabeth Silberhorn, Sujaan Das, Ritwik Singhal, Kannan Venugopal, Simon Holzinger, Barbara Stokes, Ella Schadt, Lauriane Sollelis, Victoria A. Bonnell, Matthew Gow, Andreas Klingl, Matthias Marti, Manuel Llinás, Markus Meissner, Gernot Längst. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature, 2025; DOI: 10.1038/s41586-025-08595-x
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751