- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Six feet not far enough to stop virus transmission in light winds
WASHINGTON -- Airborne transmission of viruses, like the virus causing COVID-19, is not well understood, but a good baseline for study is a deeper understanding of how particles travel through the air when people cough.
In a paper published in Physics of Fluids, from AIP Publishing, Talib Dbouk and Dimitris Drikakis discovered that with even a slight breeze of 4 kph, saliva travels 18 feet in 5 seconds.
"The droplet cloud will affect both adults and children of different heights," Drikakis said. "Shorter adults and children could be at higher risk if they are located within the trajectory of the traveling saliva droplets."
Saliva is a complex fluid, and it travels suspended in a bulk of surrounding air released by a cough. Many factors affect how saliva droplets travel, including the size and number of droplets, how they interact with one another and the surrounding air as they disperse and evaporate, how heat and mass are transferred, and the humidity and temperature of the surrounding air.
To study how saliva moves through air, Dbouk and Drikakis created a computational fluid dynamics simulation that examines the state of every saliva droplet moving through the air in front of a coughing person. Their simulation considered the effects of humidity, dispersion force, interactions of molecules of saliva and air, and how the droplets change from liquid to vapor and evaporate.
The computational domain in the simulation is a grid representing the space in front of a coughing person. The analysis involved running partial differential equations on 1,008 saliva droplets and solving approximately 3.7 million equations in total.
"Each cell holds information about variables like pressure, fluid velocity, temperature, droplet mass, droplet position, etc.," Dbouk said. "The purpose of the mathematical modeling and simulation is to take into account all the real coupling or interaction mechanisms that may take place between the main bulk fluid flow and the saliva droplets, and between the saliva droplets themselves."
Further studies are needed to determine the effect of ground surface temperature on the behavior of saliva in air and to examine indoor environments, where air conditioning significantly affects the particle movement through air.
"This work is vital, because it concerns health and safety distance guidelines, advances the understanding of spreading and transmission of airborne diseases, and helps form precautionary measures based on scientific results," said Drikakis.
for more details click on the link: http://dx.doi.org/10.1063/5.0011960
Hina Zahid Joined Medical Dialogue in 2017 with a passion to work as a Reporter. She coordinates with various national and international journals and association and covers all the stories related to Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in the medical field. Email:Â editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751