- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Tropical ginger treatment for blocking inflammation
Ikoma, Japan - Many natural compounds have various anti-inflammatory and other beneficial properties that humans have been utilizing for medicinal purposes for hundreds of years. However, the specific molecular mechanisms behind these health-promoting effects are not always clear. One such compound is 1'-acetoxychavicol acetate, or ACA, which comes from the tropical ginger Alpinia plant. Now, researchers from Nara Institute of Science and Technology (NAIST) have identified how ACA can help in the treatment of inflammatory diseases.
In a report published in International Immunology, they found that ACA attenuates mitochondrial damage through decreasing mitochondrial reactive oxygen species (ROS), blocking activation of a crucial protein complex known as the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome. Many inflammatory diseases, like inflammatory bowel disease, display improper and chronic activation of this complex.
Previous work has suggested that the NLRP3 inflammasome plays a significant role in promoting inflammation by secreting a molecule called IL-1ß. This acts as a messenger that recruits various immune cells to the site of injury or infection. Additional studies described how production of ROS can help trigger activation of the NLRP3 inflammasome. Because other groups showed that ACA can reduce ROS production in certain immune cells, the NAIST researchers became curious how this compound would impact the NLRP3 inflammasome and its functions.
"Many disease pathogeneses involve dysregulation of the inflammasome," says Daisuke Ori, co-lead author on the study. "Blood cells from people suffering from rheumatoid arthritis or other autoimmune disorders frequently have increased levels of inflammasome-derived IL-1ß. Therefore, targeting the NLRP3 inflammasome with a compound like ACA may be a promising therapeutic strategy."
The researchers grew immune cells in culture that were obtained from mouse bone marrow, and also used a mouse model of colitis. ACA was added to the growing cells and the live mice were given the compound in their food. The researchers then examined the effects on ROS production, secretion of IL-1ß, and other markers of inflammation.
"Cells treated with ACA had significantly reduced IL-1ß production, as well as lower levels of ROS," explains Taro Kawai, senior author. "ACA could also inhibit NLRP3 inflammasome activation in the colitis mouse model." These in vivo results are promising, as they suggest ACA has the potential to treat or prevent the development of inflammatory diseases. "Interestingly, we did not observe high levels of immune cell death when using ACA, which means that it may be relatively safe," continues Ori.
This work provides novel evidence for a specific molecular mechanism governing the previously observed anti-inflammatory properties of ACA. Furthermore, it highlights the potential of ACA for therapeutic use in diseases mediated by IL-1ß molecules, or associated with cytokine storm occurrence, as seen in patients suffering from severe COVID-19.
https://academic.oup.com/intimm/advance-article-abstract/doi/10.1093/intimm/dxab016/6217095?redirectedFrom=fulltext
Hina Zahid Joined Medical Dialogue in 2017 with a passion to work as a Reporter. She coordinates with various national and international journals and association and covers all the stories related to Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in the medical field. Email:Â editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751