- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Anti-malarial drug addition may improve outcomes of brain cancer treatment
Addition of an antimalarial lumefantrine may increase effectiveness of radiation and chemotherapy in treatment of an aggressive form of brain cancer.
Glioblastoma multiforme (GBM) is an aggressive form of cancer in the brain that is typically fatal.
Researchers at VCU Massey Cancer Center and VCU Institute of Molecular Medicine (VIMM) have found that they could help improve effectiveness of current treatments of brain cancer with the addition of lumefantrine, an FDA-approved drug used to treat malaria.The study has been published in the journal Proceedings of the National Academy of Sciences.
While the current standard of care involving radiation and temozolomide, an anti-cancer chemotherapy, can marginally extend the lives of patients with glioblastoma multiforme brain tumors, resistance of GBM to these therapies is a frequent occurrence. Additionally, the five-year survival rate of GBM patients treated with the standard of care is less than 6 percent, and no current therapies prevent recurrence.
The researchers have focused on discovering FDA-approved drugs and more uncommon agents that could potentially help counteract glioblastoma's resistance to and effectiveness of treatment. "Our studies uncovered a new potential application of the antimalarial drug as a possible therapy for glioblastoma multiforme resistant to the standard of care entailing radiation and temozolomide," said Paul B. Fisher, M.Ph., Ph.D., FNAI, the principal investigator of the study .
Specifically, lumefantrine can inhibit a genetic element involved in cancer development and progression, Fli-1, which controls resistance of glioblastoma multiforme to radiation and temozolomide.
During in vitro studies (conducted with cells grown in culture) researchers found that incorporating lumefantrine while treating glioblastoma killed cancer cells and suppressed tumor cell growth. This occurred in both glioblastoma cells sensitive to and those that otherwise would be resistant to radiation and temozolomide. Furthermore, during in vivo studies (conducted using mice containing a transplanted human glioblastoma multiforme in their brains), lumefantrine inhibited tumor growth caused by both therapy-sensitive and therapy-resistant glioblastoma cells.
Discovering lumefantrine's ability to neutralize the body's resistance to radiation and chemotherapy came through genetic and molecular approaches that identified the new genetic element "Fli-1" as an important genetic element controlling resistance to therapy. This discovery became a focal point of the current research. Researchers found that "heat shock protein B1," also known as HSPB1, is prominent in glioblastoma tumors, and its expression is regulated by Fli-1. Innovative screening strategies for Fli-1 inhibitors identified lumefantrine as a prospective agent that could bind to Fli-1, inactivate it and thereby suppress expression of important genes regulating growth, survival and oncogenicity (ability to cause tumors) of glioblastoma multiforme.
In addition, two key processes essential for cancer invasion and spread known as extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT) are important factors that regulate glioblastoma's ability to respond and resist radiation and chemotherapy. Those two processes are regulated by Fli-1 and are inhibited by lumefantrine.
To help treat glioblastoma, researchers will further explore other means to counteract therapy resistance induced by Fli-1.
"These preclinical studies provide a solid rationale for Fli-1/HSPB1 inhibition with lumefantrine as a potential novel approach for glioblastoma management," Fisher said. "Identification of drugs like lumefantrine from FDA-approved therapeutic agents and from uncommon sources provides opportunities to broaden the breadth and versatility of current therapeutic regimens for glioblastoma multiforme patients."
Beyond glioblastoma, an elevated expression of Fli-1 can be seen in cancers such as melanoma, ovarian cancer, breast cancer and others, researchers said, suggesting that blocking the cancer-promoting effects of Fli-1 might help other cancer patients as well.
"The present results may have broader implications than just treating glioblastoma," Fisher said.
For more details click on the link: http://dx.doi.org/10.1073/pnas.1921531117
Hina Zahid Joined Medical Dialogue in 2017 with a passion to work as a Reporter. She coordinates with various national and international journals and association and covers all the stories related to Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in the medical field. Email:Â editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751