- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Deep learning based 3D video-EEG effective and feasible, finds study
In a recent study, Tamas Karacsony and peers utilized infrared (IR) and depth (3D) videos to investigate the feasibility of a deep learning (DL) system for 24/7 seizure type detection and classification in patients with frontal lobe epilepsy (FLE), temporal lobe epilepsy (TLE), and non-epileptic events. The DL system in the study outperformed all previously published methods for seizure type detection and classification, the findings were published in Scientific Reports.
Seizure semiology is a method used to classify epileptic seizure types based on their characteristics and symptoms. However, this method requires a significant amount of resources, as it involves long-term video-Electroencephalography monitoring and visual analysis by trained professionals. To address this issue, researchers are exploring the use of computer vision-based diagnosis support tools as an alternative approach.
The highlights of the study were:
The DL system was trained on the largest 3D video-EEG database containing around 115 seizures/+680,000 video-frames/427GB.
The researchers found that their DL system achieved a promising cross-subject validation f1-score of 0.833±0.061 for the 2-class (FLE vs. TLE) case and 0.763±0.083 for the 3-class (FLE vs. TLE vs. non-epileptic) case, based on 2-second samples.
The DL system was able to accurately differentiate between seizure types with the use of an automated, semi-specialized depth-based cropping pipeline (accuracy of 95.65%) and a Mask R-CNN-based cropping pipeline (accuracy of 96.52%).
The Authors found that these results demonstrate the feasibility of using DL for 24/7 epilepsy monitoring and suggest that it may be a promising alternative to traditional seizure semiology methods. Overall, this study highlights the potential of computer vision-based tools to support the diagnosis and management of epilepsy.
Source:
Karácsony, T., Loesch-Biffar, A. M., Vollmar, C., Rémi, J., Noachtar, S., & Cunha, J. P. S. (2022). Novel 3D video action recognition deep learning approach for near real time epileptic seizure classification. In Scientific Reports (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-022-23133-9
Neuroscience Masters graduate
Jacinthlyn Sylvia, a Neuroscience Master's graduate from Chennai has worked extensively in deciphering the neurobiology of cognition and motor control in aging. She also has spread-out exposure to Neurosurgery from her Bachelor’s. She is currently involved in active Neuro-Oncology research. She is an upcoming neuroscientist with a fiery passion for writing. Her news cover at Medical Dialogues feature recent discoveries and updates from the healthcare and biomedical research fields. She can be reached at editorial@medicaldialogues.in
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751