- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Insulin resistance from high-sugar diets tied to increased neurodegeneration risk: Study
USA: A recent study published in PLOS Biology has shown evidence suggesting a high-sugar diet causes insulin resistance in the brain, lowering the brain's ability to remove neuronal debris, thus increasing neurodegeneration risk.
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson's disease, and Alzheimer's disease affect millions of people worldwide; about 15% of people around the world have a neurodegenerative disease. There is still no clarity on the main cause of many neurodegenerative disorders, but it is known that certain risk factors play a role.
Previous studies have shown that one risk factor for developing a neurodegenerative condition is obesity. However, there is no clarity on how obesity increases neurodegenerative disease risk. Mroj Alassaf and Akhila Rajan from Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America, have shed light on the mechanisms behind obesity and the risk of neurodegenerative disease.
The researchers, using a common fruit fly model, believed a high-sugar diet causes insulin resistance in the brain, lowering the ability of the brain to remove neuronal debris, thus raising neurodegeneration risk.
Using a Drosophila model, the researchers showed that a chronic obesogenic diet induces glial insulin resistance and impedes the clearance of neuronal debris. Specifically, exposure to obesogenic diet downregulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper.
Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced insulin resistance and Draper expression.
The researchers showed that genetic stimulation of phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signalling, rescues glial defects inducted by a high-sugar diet (HSD). Here, they established that obesogenic diets impair glial phagocytic function and delay neuronal debris clearance.
With increased life expectancy, age-related neurodegenerative disorders are expected to rise, placing a tremendous burden on the healthcare system. Large-scale epidemiological studies have revealed that mid-life obesity is an independent risk factor for the development of neurodegenerative disorders. However, there was no clarity on the mechanism underlying this connection.
"We drew a causal link between diet-induced obesity and impaired glial phagocytic function, a major contributor to the pathology of age-related neurodegenerative disorders using a Drosophila in vivo model," the researchers wrote.
"We show that excessive systemic insulin signalling results in glial insulin resistance, dampening the expression of the engulfment receptor, Draper, leading to impaired glial clearance of degenerating axons."
"Together, our study provides a strong mechanistic insight into how diet-induced obesity modifies glial function, thereby raising neurodegenerative disorder risk," they concluded.
Reference:
Alassaf M, Rajan A (2023) Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 21(11): e3002359. https://doi.org/10.1371/journal.pbio.3002359
MSc. Biotechnology
Medha Baranwal joined Medical Dialogues as an Editor in 2018 for Speciality Medical Dialogues. She covers several medical specialties including Cardiac Sciences, Dentistry, Diabetes and Endo, Diagnostics, ENT, Gastroenterology, Neurosciences, and Radiology. She has completed her Bachelors in Biomedical Sciences from DU and then pursued Masters in Biotechnology from Amity University. She has a working experience of 5 years in the field of medical research writing, scientific writing, content writing, and content management. She can be contacted at  editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751