- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
New diagnostic tool using AI and digital camera can detect facial palsy with high accuracy
Australia: Researchers from the Middle Technical University (MTU) in Baghdad and the University of South Australia (UniSA) have developed a real-time detection system for facial palsy using a microcomputer, digital camera, and a deep learning algorithm.
Facial palsy is caused by impairment of the facial nerve, resulting in temporary muscle weakness or paralysis on one side of the face, affecting approximately 1 in 60 people worldwide during their lifetime. Less commonly, paralysis of the face may be caused by a tumour, infection or stroke.
In their work published in BioMedInformatics, computer scientists have described the development of a new diagnostic tool using artificial intelligence (AI) and a digital camera to detect facial palsy with 98% accuracy, including the patient’s gender and age.
Researchers from Iraq and Australia say the tool can reduce diagnostic errors that often occur with this common and treatable neurological disorder.
Using a dataset of 26,000 images, containing 19,000 normal images and 1600 facial palsy images, researchers employed AI techniques to train computer vision systems to recognise the condition, differentiating them from healthy individuals. They then took photos of 20 patients with different degrees of facial palsy, using an algorithm to detect the condition in real time, as well as identifying their approximate age and gender.
University of South Australia remote sensing engineer Professor Javaan Chahl says the system achieved a 98% accuracy rate.
“Using computer vision systems to detect facial palsy could not only prevent misdiagnosis but also save patients and medical specialists time, effort and cost,” Prof Chahl says.
The researchers say that detection based on a visual examination can be inaccurate because facial palsy often mimics other conditions, and can be subtle in its presentation. Detection followed by investigation is important because possible causes include stroke, HIV infection, multiple sclerosis, Guillain-Barré syndrome and Lyme disease.
Previous literature reported in a 2020 paper estimates that misdiagnosis occurs in up to 20% of cases.
People most at risk of developing facial palsy are usually aged between 30 and 45 years, pregnant women, diabetics, and those with a family history. The left side of the face is also more likely to be affected but the condition normally resolves spontaneously within six months.
Reference:
Amsalam, A.S.; Al-Naji, A.; Daeef, A.Y.; Chahl, J. Automatic Facial Palsy, Age and Gender Detection Using a Raspberry Pi. BioMedInformatics 2023, 3, 455-466. https://doi.org/10.3390/biomedinformatics3020031.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751