- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Good vibrations could revolutionize assisted reproductive technology, reveals research

In the quest to address infertility, Cornell University researchers have developed a groundbreaking device that could simplify and automate oocyte cumulus removal, a critical step in assisted reproductive technologies.
Their vibration-powered chip not only simplifies a complex procedure but also extends it to areas of the world lacking skilled embryologists or well-funded labs-reducing overall costs. This offers hope to millions of couples struggling with infertility – and makes fertility treatments more accessible worldwide.
“This platform is a potential game-changer,” said Alireza Abbaspourrad, associate professor of food chemistry and ingredient technology in food science. “It reduces the need for skilled technicians, minimizes contamination risks and ensures consistent results – all while being portable and cost-effective.”
Abbaspourrad is co-author of “On-Chip Oocyte Cumulus Removal using Vibration Induced Flow,” published in the journal Lab on a Chip.
Doctors treating infertility need to do a critical step: gently separate protective cumulus cells from oocytes, the developing egg cells. The process, known as cumulus removal (CR), is essential for evaluating oocyte maturity before spermatozoon injection, or ensuring successful fertilization after insemination in in vitro fertilization.
Traditionally, CR relies on manual pipetting: by flushing the single oocyte repeatedly with a micropipette, cumulus cells are detached from the oocyte. However, the technique demands precision, expertise and significant time. Errors can lead to damaged oocytes or failed fertilization, making the procedure a delicate and labor-intensive task.
The team’s innovation: a disposable, open-surface chip that uses vibrations, which they call vibration-induced flow, to automate CR. The chip features a spiral array of micropillars that create a whirling flow when vibrated, separating smaller cumulus cells from larger oocytes.
“The process is fast, efficient, noninvasive and more consistent, while reducing manual labor and preserving embryo development outcomes,” said Amirhossein Favakeh, a doctoral candidate in Abbaspourrad’s lab and a co-author of the study. “The oocytes remain safely in the loading chamber, while the cumulus cells are swept into an adjacent collection well.”
To ensure the safety of the technique, the team compared fertilization and embryo development rates between oocytes denuded manually and those treated with vibration induced flow. The results were nearly identical: fertilization rates were 90.7% for manual pipetting and 93.1% for vibration induced flow, while the rate of formation of blastocysts, balls of cells formed early in a pregnancy, were 50.0% and 43.1%, respectively.
“This shows that our method doesn’t compromise the developmental potential of the oocytes,” Abbaspourrad said.
“Ordinarily, the whole process is costly and delicate; clinics invest a lot of time in training, and it is very dependent on human resources,” Abbaspourrad said. “With this, you don’t need a highly trained human to do it. And what is really important is there is almost no chance of damaging or losing the cell.”
Reference:
Amirhossein Favakeh, Amir Mokhtare, Hanxue Zhang, Yi Athena Ren and Alireza Abbaspourrad, On-Chip Oocyte Cumulus Removal using Vibration Induced Flow, Lab on a Chip, DOI:10.1039/D5LC00414D
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751