- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Novel AI-enabled screening method for glacoma achieves 97% accuracy
A novel technique for screening glaucoma has been developed by scientists from Nanyang Technological University, Singapore (NTU Singapore), in collaboration with clinicians at Tan Tock Seng Hospital (TTSH) in Singapore.
have developed a novel method that uses artificial intelligence (AI) to screen for glaucoma.The AI-enabled method uses algorithms to differentiate optic nerves with glaucoma from those that are normal by analysing 'stereo fundus images' – multi-angle 2D images of the retina that are combined to form a 3D image.
When tested on stereo fundus images from TTSH patients undergoing expert examination, the AI method yielded an accuracy of 97 per cent in diagnosing glaucoma.
Glaucoma is often called 'the silent thief of sight' as it is usually asymptomatic until latter stages, when prognosis is poor. It is the principal cause of irreversible blindness worldwide and, in tandem with the rapid growth of the ageing population, is expected to affect 111.8 million people globally by 2040, up from 76million in 2020
[1]The automated glaucoma diagnosis method developed by NTU and TTSH, described in a study published in the peer-reviewed scientific journal Methods in June 2021, could potentially be used in less developed areas where patients lack access to ophthalmologists, said the scientists.
The study exemplifies NTU's research efforts as part of its 2025 strategic plan to be at the forefront of tackling four of humanity's grand challenges, one of which is to respond to the needs and challenges of healthy living and ageing.
Dr Leonard Yip, co-author of the study and Head of Glaucoma Service at the National Healthcare Group (NHG) Eye Institute, TTSH, said: "Many glaucoma patients remain undiagnosed in the community, and in developing countries like India, the percentage of undiagnosed cases may be well over 90 per cent. While cases are usually picked up during routine eye checks, population-based screening is challenging due to the specialised and expensive equipment or trained experts required. The process of manually inspecting individual retinal images is also time-consuming and depends on subjective evaluation by experts. Our method of using AI, in contrast, could potentially be more efficient and economical."
Associate Professor Wang Lipo from the NTU School of Electrical and Electronic Engineering and lead author of the study said: "Through a combination of machine learning techniques, our team has developed a screening model that can diagnose glaucoma from fundus images, removing the need for ophthalmologists to take various clinical measurements (such as internal eye pressure) for diagnosis. The ease of use of our robust automated glaucoma diagnosis approach means that any healthcare practitioner could make use of the system to help in glaucoma screening. This will be especially helpful in geographical areas with less access to ophthalmologists."
The team is now testing their algorithms on a larger dataset of patient fundus images taken at TTSH. They are also looking at how the software can be ported to a mobile phone application so that, when used in conjunction with a fundus camera or lens adaptor for mobile phones, it could be a feasible glaucoma screening tool in the field.
How it works
The automated glaucoma diagnostic system developed by the team at NTU and TTSH uses a set of algorithms to analyse stereo fundus images taken as pairs by two cameras from different viewpoints. These 2D 'left' and 'right' images of the fundus help to form a 3D view when combined.
Using two images ensures that if one image is poor quality, the other image can usually compensate and the system can maintain its accurate performance, said the scientists.
The set of algorithms is made up of two components: a deep convolutional neural network and an attention-guided network. The former mimics the human brain's biological process to adapt to learning new things, while the attention-guided network imitates the brain's manner of selectively focusing on a few relevant features – in this case, the optic nerve head region in the fundus images.
The outputs from these two components are then fused together to generate the final prediction result.
To test their algorithms, the scientists first reduced the resolution of 282 fundus images (70 glaucoma cases and 212 healthy cases) taken of TTSH patients during their eye screening, before training the algorithms with 70 per cent of the dataset.
To generate more training samples, the scientists also applied image augmentation – a technique that involves applying random but realistic transformations, such as image rotation – to increase the diversity of the dataset used to train the algorithms, which enhances the algorithms' classification accuracy.
AI-enabled screening method achieves 97% accuracy
The joint research team then tested their screening method on the remaining 30 per cent of the patient images and found that it had an accuracy of 97 per cent in correctly identifying glaucoma cases, and a sensitivity (the fraction of cases correctly classified among all positive glaucoma cases) of 95 per cent – higher than other state-of-the-art deep learning based-methods also trialled during the study, which yielded sensitivities ranging from 69 to 89 per cent.
The scientists also found that using a pair of stereo fundus images improved the sensitivity of their screening system. When single fundus images were used, the algorithms had a lower sensitivity of 85 to 86 per cent.
For further reference log on to:
Paper 'Glaucoma screening using an attention-guided stereo ensemble network' published online in Methods 2021
https://doi.org/10.1016/j.ymeth.2021.06.010
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751
Next Story