- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
New method for image reconstruction in electrical impedance tomography
Recently, a team led by Prof. DU Jiangfeng from the Key Laboratory of Microscale Magnetic Resonance of Chinese Academy of Sciences (CAS) developed a new method for deep electrical impedance tomography reconstruction without training, which paved a new way for applying electrical impedance tomography technology in determining lesion tissue specificity. This work was published in Transactions on Pattern Analysis and Machine Intelligence.
Obtaining low damage, high resolution and dynamic functional images have always been one of the core objectives of medical imaging research. Electrical impedance tomography has attracted much attention due to its advantages such as non-invasive, non-destructive and non-radiation. In particular, it has played an important role in the treatment of patients with acute respiratory distress syndrome caused by coronavirus. However, the reconstruction of high-quality image remains a challenge in electrical impedance tomography.
Prof. DU Jiangfeng’s team have conducted a series of research on the method of extracting prior information in image reconstruction using neural network. Former neural networks are usually task-specific and rely heavily on a large amount of data, which is difficult to obtain in medical practice. In their recent work, the team combined deep image prior (DIP) with electrical impedance tomography to execute high-quality image reconstruction without training data. The results showed that not only can this method complete multiple tasks using only one model, it can also be adapted to new tasks without training, exhibiting great potential in practical application.
This research established a new paradigm for image reconstruction in electrical impedance tomography, which provides crucial theoretical support for the application of electrical impedance tomography in the diagnosis of diseases like brain injury, stroke, emphysema and breast cancer and is of great value to the development of medical imaging technology.
Reference:
D. Liu, J. Wang, Q. Shan, D. Smyl, J. Deng and J. Du, "DeepEIT: Deep Image Prior Enabled Electrical Impedance Tomography," in IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2023.3240565.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751