'Nanozyme' therapy significantly reduced buildup of harmful dental plaque: Study

Written By :  Hina Zahid
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2021-10-30 03:30 GMT   |   Update On 2021-10-30 03:30 GMT
Advertisement

A growing body of evidence points to a link between iron-deficiency anemia and severe tooth decay. Whether the connection is correlative or causative is unknown, though both conditions are associated with poor diets and are more common in people living in impoverished environments and with underlying medical conditions.

Researchers from the University of Pennsylvania and Indiana University have found that a combination of an iron-oxide nanoparticle-containing solution called ferumoxytol and hydrogen peroxide holds promise for treating, preventing, and even diagnosing dental decay. The combination is an FDA-approved therapy for iron-deficiency anemia.

Advertisement

The study found that a twice daily application of ferumoxytol, which activated hydrogen peroxide contained in a follow-up rinse, significantly reduced the buildup of harmful dental plaque and had a targeted effect on the bacteria largely responsible for tooth decay. These types of nanoparticles with enzyme-like properties are sometimes known as "nanozymes" and are increasingly being explored for their potential in biomedical and environmental applications.

The study has been published in the journal Nano Letters. 

"We found that this approach is both precise and effective," says Hyun (Michel) Koo, a professor in the University of Pennsylvania School of Dental Medicine. "It disrupts biofilms, particularly those formed by Streptococcus mutans, which cause caries, and it also reduced the extent of enamel decay. This is the first study we know of done in a clinical setting that demonstrates the therapeutic value of nanozymes against an infectious disease."

The work is an extension of a 2018 paper published in Nature Communications, in which Koo and colleagues, including David Cormode of Penn's Perelman School of Medicine, showed that the iron oxide nanoparticle-hydrogen peroxide treatment could prevent biofilm accumulation and tooth-decay in an experimental model and an animal model.

In the current work, the scientists wanted to take the next logical step, working in humans. In a randomized study, they had 15 participants use a removable, denture-like device with real tooth enamel attached, a method developed and extensively tested by Domenick T. Zero of Indiana University, a co-corresponding author on the current paper.

The study participants applied a sugar-containing solution to the appliance four times a day, mimicking high-sugar meals and snacks consumed in the course of daily life. Participants were asked not to brush the enamel specimens but instead to rinse the appliance twice a day. Participants were divided into three groups, with one using the ferumoxytol then the hydrogen peroxide rinse, one with a solution that provides the inactive ingredients in ferumoxytol, and a third with water alone.

After 14 days, the researchers analyzed the biofilms that accumulated on the enamel specimens. They found the experimental treatment potently reduced the growth of biofilms containing S. mutans and could kill this bacteria with high specificity. Other commensal bacteria normally found in the mouth were not affected by the ferumoxytol-hydrogen peroxide therapy.

The results and safety of the approach were supported by previous work, which has shown that the iron oxide nanoparticles do not bind to the mucosal tissue in the mouth and do not cause cytotoxicity or changes in the oral microbiome in an animal model.

"This treatment doesn't seem to have harmful, off-target effects," Koo says.

The reason for this precision is three-fold. The reaction to catalyze hydrogen peroxide only happens in a highly acidic environment, such as what arises when caries-causing bacteria are present and active. The treatment also causes the sticky matrix of carbohydrates to break down, degrading the biofilm and exposing the microbes. And ferumoxytol can specifically bind to receptors on the S. mutans cell membrane, facilitating its killing.

In a final stage of the study, the researchers added a marker that turns blue when exposed to reactive oxygen species, like those generated by the catalysis of hydrogen peroxide by ferumoxytol nanoparticles. And indeed, the team found that the intensity of blue labeling corresponded with acidic biofilms containing S. mutans.

Because of this "detection" capability, Koo notes that the experimental treatment has the potential to become what is known as a "theranostic," that is, a drug that can be used to both diagnose a condition and treat it. "It can also be used at home," Koo says. "You could rinse with it, see how much cavity-causing plaque there is, and then treat with the solution or consult a dentist for follow-up treatment."

Hyun (Michel) Koo is a professor in the Department of Orthodontics and divisions of Community Oral Health and Pediatric Dentistry at the University of Pennsylvania School of Dental Medicine.

Koo's coauthors on the paper were Yuan Liu and Zhi Ren of Penn Dental Medicine, Yue Huang and Min Jun Oh of both Penn Dental Medicine and Penn's Perelman School of Medicine, David Cormode of the Perelman School of Medicine and Penn's School of Engineering and Applied Science, Dongyeop Kim of Korea's Jeonbuk National University, and Anderson T. Hara and Domenick T. Zero of Indiana University. Liu was first author and Zero and Koo were co-corresponding authors on the paper.

https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02702


Tags:    

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News