Robot navigation clinically reliable method for implant placement
Robot navigation is a clinically reliable method for implant placement suggests a new study published in the Journal of Prosthetic Dentistry.
The systematic assessment of accuracy of robot-assisted implant surgery is lacking. The purpose of this systematic review and meta-analysis was to evaluate the accuracy of robot-assisted implant surgery and compare it with computer-aided implant surgery in partially and completely edentulous patients and human phantoms. The studies were selected from ScienceDirect, Web of science, Cochrane Library, PubMed, and CNKI databases. The risk of bias of the included studies was evaluated with the risk of bias in nonrandomized studies of interventions tool. The mean and standard deviation of global coronal, apical, and angular deviations of implants were the primary outcome. Meta-analysis was conducted to evaluate the accuracy of the robot-assisted implant surgery and compare it with computer-aided implant surgery in dental implantation (α=.05).
Results: Eleven in vitro studies with 809 implants and 10 clinical studies with 257 implants were included. For the in vitro studies, the mean global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.7 mm (95% CI: 0.6 to 0.8), 0.8 mm (95% CI: 0.6 to 1.0), and 1.8 degrees (95%CI: 1.2 to 2.5), respectively. For the clinical studies, the average global coronal, apical, and angular deviations of robot-assisted implant surgery were 0.6 mm (95% CI: 0.5 to 0.8), 0.7 mm (95% CI: 0.6 to 0.8), and 1.6 degrees (95%CI: 1.1 to 2.0), respectively. For the in vitro studies, the robot-assisted implant surgery group showed significantly more decrease in global coronal deviation than the computer-assisted implant surgery group (P=.012). The robot-assisted implant surgery group offered smaller global apical deviation (P=.001) and angular deviation (P<.001) than the computer-assisted implant surgery group.Robot navigation is a clinically reliable method of implant placement. Significantly lower global coronal, apical, and angular deviations were observed for robot-assisted implant surgery compared with computer-assisted implant surgery in human phantoms.
Reference:
Yang J, Li H. Accuracy assessment of robot-assisted implant surgery in dentistry: A systematic review and meta-analysis. J Prosthet Dent. 2024 Jan 8:S0022-3913(23)00819-3. doi: 10.1016/j.prosdent.2023.12.003. Epub ahead of print. PMID: 38195255.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.