Novel method tracking changes in blood vessels could advance brain disease detection
Teams of biomedical researchers led by Brown University scientists have been exploring for years whether devastating neurodegenerative diseases could be caught decades earlier - perhaps through something as simple as a routine eye exam instead of a battery of diagnostic tests.
The results begin to give biomedical researchers a tool to identify and study biomarkers in these blood vessels that may hold pivotal clues to early detection of progressive neurodegenerative diseases like Alzheimer’s, Parkinson’s, Huntington’s disease and multiple sclerosis.
The hope is that they can next use their method to image the retina in mice to look for these biomarkers, and from there scale up to imaging the retina of humans to study and track how the blood vessels change. The work is among a number of research efforts by Brown scientists to catch Alzheimer’s early by peeking into the eyes.
The novel method they created combines advanced imaging techniques and AI algorithms to track changes in the dynamics and anatomy of blood vessels of the brain. The researchers used the method to measure these changes in 25 different mice for more than seven months.
According to the study, the research team focused on a non-invasive imaging test called optical coherence tomography. OCT uses light waves to look through the retina and image blood vessels that surround the optic nerve. The team adapted multiple OCT techniques to image brain blood vessels like pial vessels, cortical vessels and capillary network. They then integrated the OCT methods with image processing algorithms to search for patterns in the data they collected from normal mice and Alzheimer’s disease model mice.
Analyzing the data, they noticed differences between normal age-related changes and vascular changes brought on by disease.
Reference:
Near-lifespan longitudinal tracking of brain microvascular morphology, topology, and flow in male mice,Nature Communications,DOI 10.1038/s41467-023-38609-z
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.