Working memory depends on reciprocal interactions across the brain

Written By :  Isra Zaman
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2022-07-28 03:30 GMT   |   Update On 2022-07-28 03:30 GMT

In a new study, published in Nature, neuroscientists at the Sainsbury Wellcome Centre at UCL investigated the reciprocal interactions between two brain regions that represent visual working memory in mice. The team found that communication between these two loci of working memory, the parietal cortex, and premotor cortex, was co-dependent on instantaneous timescales. SWC...

Login or Register to read the full article

In a new study, published in Nature, neuroscientists at the Sainsbury Wellcome Centre at UCL investigated the reciprocal interactions between two brain regions that represent visual working memory in mice. The team found that communication between these two loci of working memory, the parietal cortex, and premotor cortex, was co-dependent on instantaneous timescales.

SWC researchers compared a working memory-dependent task with a simpler working memory-independent task. In the working memory task, mice were given a sensory stimulus followed by a delay and then had to match the next stimulus to the one they saw prior to the delay. This meant that during the delay the mice needed a representation in their working memory of the first stimulus to succeed in the task and receive a reward. In contrast, in the working memory-independent task, the decision the mice made on the secondary stimulus was unrelated to the first stimulus.

By contrasting these two tasks, they found that most neural activities were unrelated to working memory, and instead working memory representations were embedded within 'high-dimensional' modes of activity, meaning that only small fluctuations around the mean firing of individual cells were together carrying the working memory information.

To understand how these representations are maintained in the brain, the neuroscientists used a technique called optogenetics to selectively silence parts of the brain during the delay period and observed the disruption to what the mice were remembering. Interestingly, they found that silencing working memory representations in either one of the parietal or premotor cortical areas led to similar deficits in the mice's ability to remember the previous stimulus, implying that these representations were instantaneously co-dependent on each other during the delay.

To test this hypothesis, the researchers disrupted one area while recording the activity that was being communicated back to it by the other area. When they disrupted the parietal cortex, the activity that was being communicated by the premotor cortex to the parietal cortex was largely unchanged in terms of average activity. However, the representation of working memory activity specifically was disrupted. This was also true in the reverse experiment when they disrupted the premotor cortex and looked at the parietal cortex and also observed working memory-specific disruption of cortical-cortical communication.

Ref: Dr. Ivan Voitov et al, Nature: 'Cortical feedback loops bind distributed representations of working memory' DOI: 10.1038/s41586-022-05014-3

Tags:    
Article Source : Nature

Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement/treatment or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2024 Minerva Medical Treatment Pvt Ltd

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News