Working memory depends on reciprocal interactions across the brain
In a new study, published in Nature, neuroscientists at the Sainsbury Wellcome Centre at UCL investigated the reciprocal interactions between two brain regions that represent visual working memory in mice. The team found that communication between these two loci of working memory, the parietal cortex, and premotor cortex, was co-dependent on instantaneous timescales.
SWC researchers compared a working memory-dependent task with a simpler working memory-independent task. In the working memory task, mice were given a sensory stimulus followed by a delay and then had to match the next stimulus to the one they saw prior to the delay. This meant that during the delay the mice needed a representation in their working memory of the first stimulus to succeed in the task and receive a reward. In contrast, in the working memory-independent task, the decision the mice made on the secondary stimulus was unrelated to the first stimulus.
By contrasting these two tasks, they found that most neural activities were unrelated to working memory, and instead working memory representations were embedded within 'high-dimensional' modes of activity, meaning that only small fluctuations around the mean firing of individual cells were together carrying the working memory information.
To understand how these representations are maintained in the brain, the neuroscientists used a technique called optogenetics to selectively silence parts of the brain during the delay period and observed the disruption to what the mice were remembering. Interestingly, they found that silencing working memory representations in either one of the parietal or premotor cortical areas led to similar deficits in the mice's ability to remember the previous stimulus, implying that these representations were instantaneously co-dependent on each other during the delay.
To test this hypothesis, the researchers disrupted one area while recording the activity that was being communicated back to it by the other area. When they disrupted the parietal cortex, the activity that was being communicated by the premotor cortex to the parietal cortex was largely unchanged in terms of average activity. However, the representation of working memory activity specifically was disrupted. This was also true in the reverse experiment when they disrupted the premotor cortex and looked at the parietal cortex and also observed working memory-specific disruption of cortical-cortical communication.
Ref: Dr. Ivan Voitov et al, Nature: 'Cortical feedback loops bind distributed representations of working memory' DOI: 10.1038/s41586-022-05014-3
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.