Just 12 minutes of intense exercise significantly improves metabolic health: Study
BOSTON -Regular exercise is associated with lower risk of cardiovascular disease and mortality but mechanisms of exercise-mediated health benefits remain less clear.
Researchers at Massachusetts General Hospital (MGH) have found in a new study that short bursts of physical exercise induce changes in the body's levels of metabolites that correlate to, and may help gauge, an individual's cardiometabolic, cardiovascular and long-term health.
In a paper published in Circulation, the research team describes how approximately 12 minutes of acute cardiopulmonary exercise impacted more than 80% of circulating metabolites, including pathways linked to a wide range of favorable health outcomes, thus identifying potential mechanisms that could contribute to a better understanding of cardiometabolic benefits of exercise.
"Much is known about the effects of exercise on cardiac, vascular and inflammatory systems of the body, but our study provides a comprehensive look at the metabolic impact of exercise by linking specific metabolic pathways to exercise response variables and long-term health outcomes," says investigator Gregory Lewis, MD, section head of Heart Failure at MGH and senior author of the study. "What was striking to us was the effects a brief bout of exercise can have on the circulating levels of metabolites that govern such key bodily functions as insulin resistance, oxidative stress, vascular reactivity, inflammation and longevity."
The MGH study drew on data from the Framingham Heart Study to measure the levels of 588 circulating metabolites before and immediately after 12 minutes of vigorous exercise in 411 middle-aged men and women. The research team detected favorable shifts in a number of metabolites for which resting levels were previously shown to be associated with cardiometabolic disease. For example, glutamate, a key metabolite linked to heart disease, diabetes and decreased longevity, fell by 29%. And DMGV, a metabolite associated with increased risk of diabetes and liver disease, dropped by 18%. The study further found that metabolic responses may be modulated by factors other than exercise, including a person's sex and body mass index, with obesity possibly conferring partial resistance to the benefits of exercise.
"Intriguingly, our study found that different metabolites tracked with different physiologic responses to exercise, and might therefore provide unique signatures in the bloodstream that reveal if a person is physically fit, much the way current blood tests determine how well the kidney and liver are functioning," notes co-first author Matthew Nayor, MD, MPH, with the Heart Failure and Transplantation Section in the Division of Cardiology at MGH. "Lower levels of DMGV, for example, could signify higher levels of fitness."
The Framingham Heart Study, which began in 1948 and now embraces three generations of participants, allowed MGH researchers to apply the same signatures used in the current study population to stored blood from earlier generations of participants. By studying the long-term effects of metabolic signatures of exercise responses, researchers were able to predict the future state of an individual's health, and how long they are likely to live.
"We're starting to better understand the molecular underpinnings of how exercise affects the body and use that knowledge to understand the metabolic architecture around exercise response patterns," says co-first author Ravi Shah, MD, with the Heart Failure and Transplantation Section in the Division of Cardiology at MGH. "This approach has the potential to target people who have high blood pressure or many other metabolic risk factors in response to exercise, and set them on a healthier trajectory early in their lives.
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050281
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.