Laser irradiation may be promising treatment modality for osteoporosis

Written By :  Hina Zahid
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2020-10-11 10:45 GMT   |   Update On 2020-10-12 09:43 GMT

Osteoporosis is a disease in which bone loses mass as a result of age or other influences. This weakening is the leading cause of fractures in the elderly, often after trivial injuries, and makes treating these "pathological fractures" a challenge.

Bone health is a dynamic process of continual remodeling controlled by multiple factors. Sclerostin, a glycoprotein coded by the gene SOST, is produced by bone cells and suppresses bone formation. Now, researchers at Tokyo Medical and Dental University (TMDU) have shown that laser irradiation, by inhibiting sclerostin expression without inducing inflammation, shows promise as a new treatment modality for osteoporosis.

Lasers have been used in medical and dental practice for their beneficial photo-biomodulation effects on tissue healing. The benefits of low-level laser therapy are now gaining increased attention in spheres of medicine and dentistry that require enhanced bone regeneration.

The team knew that in periodontal surgery, bone that underwent controlled destruction using a specific type of laser known as an Er:YAG laser healed faster than bone subjected to conventional bur drilling. Thus, they wondered whether Er:YAG laser irradiation modified SOST expression in bone. "We set out to compare comprehensive and sequential gene expression and biological healing responses in laser-ablated, bur-drilled, and untreated bone, as well as investigating the bio-stimulation effect of an Er:YAG laser on osteogenic cells," explains Yujin Ohsugi, lead author.

Using microarray analysis, the researchers first studied gene expression patterns in rat skull bones during healing at 6, 24, and 72 hours after drilling or laser treatment. Immunohistochemical analysis at 1 day was performed to detect sclerostin expression. Additionally, oseteogenic cell cultures were irradiated in vitro and assessed for cell death and sclerostin concentration.

"We confirmed decreased sclerostin expression after laser irradiation both in vivo and in vitro," affirms Sayaka Katagiri, corresponding author. "Interestingly, sequential microarray analysis revealed a clear distinction in the gene expression pattern between bur-drilled and laser-ablated bones at 24 hours, with the former alone showing enriched inflammation-related pathways. Significantly, at 6 hours following laser ablation, the Hippo signaling pathway that limits tissue overgrowth was enriched but inflammation-related pathways remained unaffected, suggesting that laser irradiation worked thorough mechanical bio-stimulation."

The finding that mechanical stimulation of laser irradiation inhibits the pathways that suppress bone regeneration without provoking inflammation may aid development of laser-based therapeutic methods. Such methods might be used in treatments for osteoporosis and to induce or promote bone regeneration in medical and dental procedures.

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202001032R

Tags:    
Article Source : The FASEB Journal

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News