AI can successfully predict ESRD in diabetes patients, finds study
Netherlands: A machine-learning model can help in the successful prediction of end‐stage renal disease (ESRD) in patients with nephropathy and type 2 diabetes, suggests a recent study in the journal Diabetes, Obesity and Metabolism.
The prediction of long‐term renal risk in type 2 diabetes patients holds importance in clinical trials and clinical practice. Sunil Belur Nagaraj, University Medical Center Groningen, Groningen, The Netherlands, and colleagues hypothesized that machine learning models can accurately predict end‐stage renal disease by using multiple baseline demographic and clinical characteristics.
The study included a total of 11 789 patients (with type 2 diabetes and nephropathy) from three clinical trials: RENAAL (N = 1513), IDNT (N = 1715), and ALTITUDE (N = 8561). Eighteen baseline demographic and clinical characteristics were used as predictors to train machine learning models to predict ESRD (doubling of serum creatinine and/or end‐stage renal disease).
The area under the receiver operator curve (AUC) was used to assess the prediction performance of models and compared against traditional Cox proportional hazard regression and kidney failure risk equation models.
Key findings of the study include:
- The feed forward neural network model predicted ESRD with an AUC of 0.82, 0.81, and 0.84 in RENAAL, IDNT and ALTITUDE, respectively.
- The feed forward neural network model selected UACR, serum albumin, uric acid and serum creatinine as important predictors and obtained the state‐of‐the‐art performance to predict the long‐term ESRD.
"Nonlinear machine learning models can be used to predict long term ESRD, despite large inter‐patient variability, in patients with type 2 diabetes and nephropathy using baseline demographic and clinical characteristics. The proposed method offers the potential to create accurate and multiple outcome predictions automated models to identify high‐risk patients who could benefit from therapy in clinical practice," concluded the authors.
The study, "Machine Learning based Early Prediction of End‐stage Renal Disease in Patients with Diabetic Kidney Disease using Clinical Trials Data," is published in the journal Diabetes, Obesity and Metabolism.
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.