New integrated robot system okay for ultrasound-guided prostate percutaneous intervention

Written By :  Dr. Kamal Kant Kohli
Published On 2022-04-16 03:30 GMT   |   Update On 2022-04-16 03:31 GMT
Advertisement

A research team from Harbin Institute of Technology has proposed a novel and effective robot system for ultrasound-guided prostate percutaneous intervention. The 8-joint robot system can realize a full-automatic control for prostate insertion, which can be potentially applied to prostate diagnose and treatment such as biopsy and brachytherapy. This study can be found in the journal Frontiers of Mechanical Engineering on January 27, 2022.

Advertisement

As the patient group with prostate disease increases greatly in recent years, the novel and rigid robot system provides a hopeful alternative for automatic intervention process with less attempts and trauma, and also depending less on operators' experience.

"The compact system makes use of the limited space for prostate insertion operation. The robot system contains 8 joints for independent control of ultrasound probe manipulation, needle positioning and needle insertion. The employed parallel structure, importantly, can avoid potential collision between the structure and patient," said by assistant professor Bo Pan, the author of the study.

The research group of Profs. Yili Fu and Bo Pan is one of the pioneer research groups studying medical imaging-guided surgery robot systems in China. The robot systems are designed to meet the complex requirements in surgical process and increase the rate of success. "Applying intelligent systems to assist doctors to realize operations with reduced difficulties is an effective approach to improve our medical treatment process," said by Pan. And this time, the study group is focused on the ultrasound-guided prostate insertion process.

Ultrasound-guided prostate insertion is a generally used process to diagnose and treat prostate diseases. During the insertion process, a doctor needs to scan the gland, insert the needle and check the accuracy at the same time. A tablet can help doctors reduce the operation difficulty; however, it restricts the insertion flexibility. Also, repetitive attempts are usually needed to increase the accuracy, which lead to bigger trauma and uncomfort to patients. The 8-joint robot system proposed in this work is aimed at achieving the whole process automatically.

"The challenging point is that the system should contain all the needed functions with compact and rigid design," explained by Pan. The newly designed system accommodates ultrasound probe and insertion needle. The transrectal ultrasound probe can be manipulated to insert and rotate for prostate scanning; the needle can be orientated and positioned for pose adjustment, and automatically inserted according to the operator's order. All the motions are independent to realize a high reflexibility. The design also considered the general requirements of medical robot design such as self-locking and easy sterilization.

"The parallel structure for needle pose adjustment is a novel design and increases the system rigidity. However, it also needs careful calibration," said by Pan. Calibration is the model parameter identification process and is important for accurate control. Parallel structures calibration cannot be accomplished using universal approaches, and an effective approach is usually related to the specific model. In the work, the researchers propose particle swarm optimization based on the parameter informative values (InfoPSO) for error identification in calibration process. PSO is a nonlinear optimization method with rapid calculation speed, but the calculation results reasonability cannot be guaranteed without a real-time supervision. Combined with parameter characteristics, the identification accuracy can be improved.

To read the full article, check out the following link:

10.1007/s11465-021-0659-x

Tags:    
Article Source : Frontiers of Mechanical Engineering

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News