- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
AI-based solutions accurately and reliably evaluate root canal filling, claims research
Artificial intelligence based solutions present accurate and reliably evaluated root canal filling, claims research published in the Oral Radiology.
Artificial intelligence (AI) since it was introduced into dentistry, has become an important and valuable tool in many fields. It was applied in different specialties with different uses, for example, in diagnosis of oral cancer, periodontal disease and dental caries, and in the treatment planning and predicting the outcome of orthognathic surgeries.
This work proposes a novel method to evaluate root canal filling (RCF) success using artificial intelligence (AI) and image analysis techniques. 1121 teeth with root canal treatment in 597 periapical radiographs (PARs) were anonymized and manually labeled. First, RCFs were segmented using 5 different state-of-the-art deep learning models based on convolutional neural networks. Their performances were compared based on the intersection over union (IoU), dice score and accuracy. Additionally, fivefold cross validation was applied for the best-performing model and their outputs were later used for further analysis. Secondly, images were processed via a graphical user interface (GUI) that allows dental clinicians to mark the apex of the tooth, which was used to find the distance between the apex of the tooth and the nearest RCF prediction of the deep learning model towards it. The distance can show whether the RCF is normal, short or long. Model performances were evaluated by well-known evaluation metrics for segmentation such as IoU, Dice score and accuracy. CNN-based models can achieve an accuracy of 88%, an IoU of 79% and Dice score of 88% in segmenting root canal fillings. The study demonstrates that AI-based solutions present accurate and reliable performance for root canal filling evaluation.8
Reference:
Çelik, Berrin, et al. "Evaluation of Root Canal Filling Length On Periapical Radiograph Using Artificial Intelligence." Oral Radiology, 2024.
Keywords:
AI-based, solutions, present, accurately, reliably, evaluate, root, canal, filling, claims research, oral radiology, Çelik,
Dr. Shravani Dali has completed her BDS from Pravara institute of medical sciences, loni. Following which she extensively worked in the healthcare sector for 2+ years. She has been actively involved in writing blogs in field of health and wellness. Currently she is pursuing her Masters of public health-health administration from Tata institute of social sciences. She can be contacted at editorial@medicaldialogues.in.